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Abstract
Neuronal voltage gated calcium channels (VGCCs) are well known for its importance in synaptic transmission and signaling pathway in the specific circuits. On the 
other hand, the role of different VGCCs in the cognitive functions has not been studied. Although it has been reported that fear extinction requires Cav2.1-regulated 
N-methyl-D-aspartate (NMDA) receptor signaling, Cav2.2-regulated synaptic function in extinction remains unknown. This study examined whether Cav2.2-
mediated signaling plays role in consolidation of extinction. Mice received intracerebroventricular injection of Cav2.2 blocker (ω-conotoxin GVIA, 5 pg/side) showed 
impaired extinction behavior and decreased expression of CREB-dependent gene Arc in medial prefrontal cortex (mPFC). Intra-mPFC injections of ω-conotoxin 
GVIA (5 pg/midline) blocked extinction. These results indicate that Cav2.2-mediated signaling is critical in the mPFC-dependent fear extinction. 

Introduction
Extinction procedures do not erase the original fear memory, but 

yield a new safety memory that inhibits fear under certain conditions 
[1]. Animals learn to associate a previously neutral or conditioned 
stimulus (CS) with an aversive or unconditioned stimulus (US) during 
fear conditioning. Subsequent re-exposure to the CS alone triggers 
two competing processes. Brief re-exposure to the CS initiates a 
reconsolidation process that serves to stabilize or maintain the original 
CS-US memory [2]. In contrast, more prolonged re-exposure to the CS 
leads to the formation of an inhibitory extinction (CS-no US) memory 
[3]. It is interesting to understand the neural circuit mechanism 
underlying fear extinction. 

Ca2+ signaling through voltage gated calcium channels (VGCCs) 
mediates Ca2+ entry into cells in response to membrane depolarization 
and thus transduces electrical signals into chemical signals [4]. 
Neuronal VGCCs including Cav2.1 (P/Q-type), Cav2.2 (N-type), and 
Cav2.3 (R-type) channels mediate a number of neuronal functions 
including neuronal excitation, neurite outgrowth, synaptogenesis, 
neurotransmitter release, neuronal survival, differentiation, plasticity, 
and regulation of gene expression [4-6]. On the other hand, the role of 
different VGCCs in the neural circuits underlying fear extinction has 
not been studied. 

Cav2.1 channels mediate the presynaptic machinery for glutamate 
release [7]. Cav2.1 and NMDA receptors and express broadly in the 
central nervous system [8-11]. A previous study reported that fear 
extinction requires a distributed neural circuit in the brain, especially 
the medial prefrontal cortex (mPFC) [12,13]. Blocking protein 
synthesis in the mPFC prevents the formation of extinction memory, 
and activation of cAMP-responsive element-binding protein (CREB)-
mediated transcription is induced in the mPFC in the consolidation 
phase of extinction [14]. Our previous study has showed that Cav2.1-
regulated NMDA receptor signaling in the mPFC regulates the CREB 

cascade involved in extinction memory [15]. The administration 
of a Cav2.1 blocker induced dysfunctional fear extinction [15]. 
However, the physiological role of Cav2.2-regulated extinction has 
not yet been determined. Cav2.2 also express broadly in the central 
nervous system [8]. Thus, administration of a Cav2.2 blocker should 
result in dysfunctional fear extinction, because precise regulation of 
neurotransmitter release through Cav2.2 also plays an important role 
in neuronal circuits [4-6]. 

There has been a growing interest in the neural mechanisms of 
fear extinction [16,17], as extinction may be a potential target for 
the treatment of neuropsychiatric diseases. In the present study, 
to examine the relationship between Cav2.2-mediated signaling in 
the mPFC and extinction memory formation, we investigated the 
extinction of conditioned fear using the wild-type mice received 
intracerebroventricular or intra-mPFC injection of Cav2.2 blocker 
(ω-conotoxin GVIA). We used immunohistochemical analysis to 
characterize the relationship between Cav2.2-mediated signaling 
and the expression of the CREB-dependent gene activity-regulated 
cytoskeleton-associated protein (Arc) after prolonged re-exposure. 
The studies presented here demonstrate the importance of mPFC-
dependent Cav2.2-mediated signaling in the consolidation of fear 
extinction. 
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Materials and methods
Mice 

All animal procedures were approved by the Animal Experiments 
Committee of Shanghai Jiao Tong University and RIKEN. The 
C57BL/6J mice was provided by Charles River Japan (Kanagawa, 
Japan) The mice were given free access to water and food pellets (CRF-
1; Oriental Yeast Co. Ltd., Tokyo, Japan) and were housed under a 
12/12-h light/dark cycle (lights on from 08:00 to 20:00) at 23 ± 1°C and 
55 ± 5% humidity. Testing was performed during the light phase of the 
cycle. All experiments were conducted blind to the treatment condition 
of the mouse.

Contextual fear conditioning 

Mice were trained and tested in conditioning chambers 
(17.5×17.5×15 cm) that had a stainless steel rod floor through which 
footshocks could be delivered (Med Associates, Inc., St. Albans, VT, 
USA). Training consisted of placing a mouse in the chamber and 
delivering a series of unsignaled three footshocks at 1-min intervals 
(first footshock at 148 s after placement in the chamber). Mice were 
returned to their home cages 30 s after the final footshock. Twenty 
four hours after training, mice were re-exposed to the conditioning 
context for 30 min. One day following the extinction session, the mice 
were tested (5 min in context). Freezing behavior was automatically 
measured (Winroof version 5.5 software; Mitani Corporation, Tokyo, 
Japan). 

Infusion

For the infusion studies, Cav2.2 blocker, ω-conotoxin GVIA (10, 
50, or 100 pg/μL, Peptide Institute, Osaka, Japan) were dissolved in 
saline (vehicle). Under anesthesia and using standard stereotaxic 
procedures, stainless-steel guide cannulae (22-gauge) were implanted 
into the lateral ventricle (posterior to bregma, -0.34 mm; lateral to 
midline, ±0.9 mm; ventral from the dura, −2.3 mm) or mPFC (anterior 
to bregma, +1.9 mm; lateral to midline, ±0 mm; ventral from the dura, 
−2.3 mm). Mice were allowed to recover for at least 1 week following 
surgery. The mice were briefly anesthetized with isoflurane to facilitate 
insertion of the injection cannula (26-gauge). Infusions into the lateral 
ventricle (0.1 μL/side) or mPFC (0.1 μL/midline) including prelimbic 
cortex (PLC) and infralimbic cortex (ILC) are accomplished at a rate of 
0.05 μL/min immediately after the re-exposure session. The injection 
cannula was left in place for 2 min following the infusion. The drug 
doses were determined according to previous report [15,18]. Mice that 
were not treated with drugs received an equivalent volume of vehicle. 

Immunocytochemistry 

Mice that received intracerebroventricular injection immediately 
after the re-exposure session were anesthetized with sodium 
pentobarbitone 90 min after the re-exposure session and were perfused 
with phosphate-buffered saline (PBS)/0.1 mm sodium fluoride (NaF) 
containing 4% paraformaldehyde. The brains were then removed, fixed 
overnight, and transferred into 30% sucrose. Coronal sections (30 μm) 
were cut on a cryostat. Consecutive sections were incubated overnight 
with an anti-Arc rabbit polyclonal primary antibody (1:1,000; Santa 
Cruz Biotechnology, Inc., Santa Cruz, CA, USA) in the blocking 
solution. The sections were incubated with biotinylated goat anti-
rabbit IgG (SAB-PO kit; Nichirei Biosciences, Tokyo, Japan), followed 
by incubation at room temperature in streptavidin-biotin-peroxidase 
complex (SAB-PO kit). Quantification of Arc-positive cells in sections 
(bregma between 2.00 and 1.88 mm) of PLC and ILC was determined 

with a computerized image analysis system (Winroof version 5.5 
software). Immunoreactive neurons were counted bilaterally with a 
fixed sample window across (200×200 μm) at least three sections by an 
experimenter blind to the treatment condition. 

Data analysis 

Data are presented as means ± standard error of the mean (SEM). 
Statistical analyses for the behavioral and immunocytochemical studies 
were conducted using Excel Statistics 2006 (SSRI, Tokyo, Japan). Data 
were analyzed using repeated measures analysis of variance (ANOVA) 
followed by Tukey’s post-hoc tests.

Results
Intracerebroventricular injection effects of ω-conotoxin 
GVIA on freezing percentage

We examined intracerebroventricular injection effects of 
ω-conotoxin GVIA on the consolidation of extinction. Our 
experimental design is shown in Figure 1A. We used four groups of 
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Figure 1. Intracerebroventricular injection effects of ω-conotoxin GVIA on freezing 
percentage. The experimental design shown (A) was used to collect the data presented 
below. The effect of ω-conotoxin GVIA on the freezing percentage is shown during the 
extinction training session (B) and on the test (C). ** P<0.01 compared with the appropriate 
control (Tukey’s test).
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reported that fear extinction requires CREB expression in the mPFC 
[14], we examined Arc expression patterns using mice (n=4 each) given 
the injections of vehicle or 5 pg/side ω-conotoxin GVIA immediately 
after re-exposure session. The experimental design is shown in Figure 
2A. All groups showed decreasing levels of freezing over the 30-min re-
exposure session [F(5, 84)=0.7, P>0.05]. After the 90-min re-exposure 
session, significantly higher Arc expression was detected in mPFC 
regions, including the prelimbic cortex (PLC) and the infralimbic 
cortex (ILC), in the vehicle-injected mice compared with the 
ω-conotoxin GVIA-injected mice [PLC: F(1, 14)=84.6, P<0.01, ILC: 
F(1,14)=20.2, P<0.01] (Figure 2B and 2C). These results indicate that 
Cav2.2-mediated signaling in the mPFC is necessary for consolidation 
of extinction. 

Intra-mPFC injection effects of ω-conotoxin GVIA on 
freezing percentage

We examined intra-mPFC injection effects of ω-conotoxin GVIA 
on the consolidation of extinction. Our experimental design is shown 
in Figure 3A. We used four groups of male mice (n=10 each) given 
systemic injections of 0 (vehicle), 1, 5, or 10 pg/midline ω-conotoxin 
GVIA. There were no significant differences among groups in the 
extinction training session [F(15, 216)=0.8, P>0.05] (Figure 3B). 
However, the groups significantly differed in the percentage of freezing 
during the test [F(3, 36)=146.9, P<0.01] (Figure 3C). Figure 3D shows 
the infusion cannula placement in the mPFC, including the PLC and 
ILC. The mice given 5 or 10 pg/midline ω-conotoxin GVIA showed 
greater freezing behavior than the mice given vehicle. These results 
shows that blockade of Cav2.2-mediated signaling in the mPFC impairs 
consolidation of extinction. 

Discussion
A major goal in extinction research is to understand the molecular 

and circuit mechanisms that underlie each of the phases of the 
extinction experience. Previous studies using administered NMDA 
receptor antagonists have demonstrated that NMDA receptors are 
not necessary during the extinction training session (extinction 
acquisition), but are necessary for long-term retention of extinction 
(extinction consolidation) [19,20]. It has been reported that Cav2.1 
blockers inhibit glutamatergic synaptic transmissions [17,21] and 
consolidation of extinction (i.e., after extinction training) [15]. It has 
been reported that ω-conotoxin GVIA inhibits presynaptic Cav2.2 
function [15] and reduces glutamate release [21]. The role of different 
VGCCs in the cognitive functions has not been studied. Therefore, 
we examined whether the Cav2.2-mediated signaling is important for 
consolidation of extinction 

We showed that intracerebroventricular injection of ω-conotoxin 
GVIA blocked extinction memory, suggesting that the signal cascade 
activated by Cav2.2 plays a role in the consolidation of extinction. 
Because Cav2.2 channels are present at a variety of synapses [8], it is 
impossible that intracerebroventricular injection study identifies the 
specific brain regions involved in the formation of extinction memory. 
In this regard, studies of expression and microinfusion in the specific 
neural region would be useful for elucidating the relevant neuronal 
mechanisms. 

Activation of CREB-mediated transcription is induced in the mPFC 
during the consolidation of the extinction phase [14]. Previous reports 
have indicated that the mPFC is engaged after extinction training 
occurs [22-25]. Our results showed that intracerebroventricular 
injection of ω-conotoxin GVIA immediately after the re-exposure 

male mice (n=10 each) given systemic injections of 0 (vehicle), 1, 5, or 
10 pg/side ω-conotoxin GVIA. There were no significant differences 
among groups in the extinction training session [F(15, 216)=0.8, 
P>0.05] (Figure 1B). However, the groups significantly differed in the 
percentage of freezing during the test [F(3, 36)=155.7, P<0.01] (Figure 
1C). The mice given 5 or 10 pg/side ω-conotoxin GVIA showed greater 
freezing behavior than the mice given vehicle. These results shows 
that blockade of Cav2.2-mediated signaling impairs consolidation of 
extinction. Correct placement of the guide cannula was verified by ink 
injection after experiments (data not shown).

Intracerebroventricular injection effects ofω-conotoxin 
GVIA on Arc expression in the mPFC

The intracerebroventricular injection study is difficult to evaluate 
the site of action of the cascade in the brain. Because previous study 
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Figure 2. Intracerebroventricular injection effects of ω-conotoxin GVIA on Arc expression. 
The experimental design shown (A) was used to collect the data presented below. The 
amount of Arc expression in the mPFC, including the prelimbic cortex (PLC) and 
infralimbic cortex (ILC), was calculated relative to the amount of Arc present in the vehicle 
injected mice (B); representative immunocytochemistry in the PLC and ILC is shown 
(C). Quantification was based on the average of five independent experiments. ** P<0.01 
compared with the appropriate control (Tukey’s test). Scale bar, 50 μm.
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session blocks Arc expression in the mPFC. The results indicate that 
the mPFC is an important region in extinction memory formation, 
particularly in consolidation of the extinction phase, and that 
information within the mPFC is likely processed by Cav2.2-regulated 
transmission. Indeed, the present study showed that blocking Cav2.2-
regulated signaling in the mPFC induces dysfunctional fear extinction. 
These results indicate that Cav2.2-mediated signaling pathway in 
the mPFC plays an important role after extinction training in the 
acquisition of a vital aspect of the extinction experience, by putting 
together relationships between different input source(s) and the mPFC. 
This, in turn, serves to shift behavioral strategies to rapidly inhibit the 
previously learned fear response during extinction retrieval. Within 
the mPFC, the PLC and ILC have been implicated in the expression of 
fear [26], and extinction memory formation in the consolidation phase 

is associated with activated neuronal function in both the PLC and 
ILC [14]. The PLC projects mainly to excitatory neurons involved in 
fear expression [27-29], whereas the ILC projects mainly to inhibitory 
neurons involved in suppressing fear after extinction [30-32]. The 
microinfusion of NMDA receptor antagonists or GABAA receptor 
agonists impairs extinction memory [24,33], whereas GABAA receptor 
antagonists facilitate extinction memory [34]. These results indicate 
that both glutamatergic and GABAergic synaptic transmission within 
the mPFC contribute to extinction learning. It has been reported that 
Cav2.2 mediates glutamatergic [35] and GABAergic [36] synaptic 
transmissions. In the present study, neuronal activity in both the PLC 
and ILC of ω-conotoxin GVIA injected mice was reduced. Although 
direct evidence of the neural circuit mechanisms of extinction learning 
and recall within the mPFC and between the mPFC and other regions 
have yet to be examined, these information would aid in understanding 
the nature and cause of extinction impairments that contribute to 
psychopathology. 

In this study, we showed that Cav2.2-mediated signaling is critical to 
mPFC-dependent consolidation of extinction behavior of conditioned 
fear. However, we didn’t examine whether there is a relationship 
between Cav2.2-mediated signal transduction and glutamatergic 
system, between Cav2.2-mediated signal transduction and GABAergic 
system, and between Cav2.1-mediated signal transduction and Cav2.2-
mediated signal transduction in the extinction memory. We plan to 
identify functional signaling pathways in specific neuronal circuits 
underlying fear extinction. 
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