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Abstract
Cav2.1 and Cav2.2 channels have predominantly expressions at presynaptic neuronal terminals and mediate neurotransmitter release in the central nervous systems. 
Although it has been reported that spatial learning requires Cav2.1-regulated signaling in the nucleus accumbens (NAc), Cav2.2-regulated function remains 
unknown. In this study we examined whether Cav2.2-mediated signaling in NAc plays role in spontaneous alternation patterns of Y maze test. Mice received intra-
accumbens injection of Cav2.2 blocker (ω-conotoxin GVIA, 5pg/side) showed impaired spontaneous alternation patterns. Our results indicate that Cav2.2-mediated 
signaling in the nucleus accumbens is also critical for spatial cognition.

Introduction
It has been reported that glutamatergic afferents from the 

hippocampus and prefrontal cortex provide the main source of 
information to the nucleus accumbens (NAc) during several types 
of cognitive activity [1-5]. Voltage gated calcium channels (VGCCs) 
controls neuronal circuits through a number of neuronal functions 
including neurotransmitter release, neuronal excitation, neurite 
outgrowth, synaptogenesis, neuronal survival, differentiation, 
plasticity, and regulation of gene expression [6-8]. Neuronal VGCCs 
include Cav2.1 (P/Q-type) and Cav2.2 (N-type) channels and have 
predominantly expressions at presynaptic neuronal terminals 
throughout the central nervous systems. It has been reported that 
glutamatergic system is one of the neurotransmitter systems regulated 
by Cav2.1 and Cav2.2 [9,10]. The role of different VGCCs in the neural 
circuits underlying spatial short-term memory has not been studied. 
An interesting question is whether there are differences in the effects 
observed after manipulation of different channel signaling. A study 
of different channel blockers and local infusions would be useful for 
inducing the effects of short-term spatial learning and for identifying 
functional signaling pathways in the specifically neuronal circuits. 

We have shown that Cav2.1-regulated glutamatergic signaling in 
the hippocampus [11] and NAc [12] is important in short-term spatial 
learning. We have also demonstrated the importance of hippocampal 
Cav2.2-regurated signaling in spatial short-term memory [13]. 
Previous reports have showed that Cav2.1 and Cav2.2 are present at 
high concentrations in the hippocampus and NAc [14] involved in 
spatial short-term memory formation. Cav2.2 channels contribute at 
a variety of functional neuronal circuit systems [6,13]. These results 
indicate that Cav2.2 also plays an important role in the NAc. However, 
the physiological role of Cav2.2-regulated cognitive performance in the 
NAc has not been determined. 

In the present study, to examine the relationship between Cav2.2-
mediated synaptic transmission and spatial short-term memory, we 

conducted the Y maze test using the mice treated with Cav2.2 inhibitor, 
ω-conotoxin GVIA in the NAc. The studies presented here demonstrate 
the importance of Cav2.2-regurated cognitive signaling in the NAc. 

Materials and methods
Mice 

 All animal procedures were approved by the Animal Experiments 
Committee of Shanghai Jiao Tong University and RIKEN. The 
C57BL/6J mice were provided by Charles River Japan (Kanagawa, 
Japan). The mice were given free access to water and food pellets (CRF-
1; Oriental Yeast Co. Ltd., Tokyo, Japan) and were housed under a 
12/12-h light/dark cycle (lights on from 08:00 to 20:00) at 23 ± 1°C and 
55  ±  5% humidity. Testing was performed during the light phase of 
the cycle. We used separate groups of male 2-month-old mice for each 
of the behavioral tests. All experiments were conducted blind to the 
treatment condition of the mouse.

Y maze test 

Y maze test was conducted between 10:00 and 16:00 by a trained 
experimenter who was blind with regard to the mouse strains. The 
mice were moved into the behavioral testing room at least 2 h prior 
to testing. Y-maze apparatus consisted of three compartments (3 cm 
wide×40 cm long×25 cm high) radiating out from the center. Before 
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alteration behavior [13]. These results suggest that the hippocampal 
signal cascade activated by Cav2.1 and Cav2.2 plays a role in the spatial 
short-term memory. Neuronal VGCCs including Cav2.1 and Cav2.2 
channels have predominantly expressions at high concentrations in 
the both hippocampus and NAc [14] involved in short-term memory 
formation [1-5]. Indeed, Cav2.1-regulated signaling in the NAc is also 
important in spatial memory formation [12]. However, the relationship 
between Cav2.2-mediated signaling in the NAc and short-term 
memory formation has not been studied. In this study, we examined 
whether intra-accumbens injection of ω-conotoxin GVIA disrupts the 
spontaneous alteration behavior. 

The present study exhibited that mice received intra-accumbens 
injection of Cav2.2 blocker showed impaired spontaneous alternation 
patterns. Although we would need electrophysiological and biochemical 
studies to examine Ca2+ signaling through Cav2.2 in response to 
membrane depolarization and thus transduces electrical signals into 
chemical signals in the NAc, our results indicate that the hippocampus 
and NAc are important regions in spatial memory formation and that 
spatial information within the regions is processed by Cav2.2-regulated 
transmission.

NMDA receptor antagonists impair the spontaneous alternation 
of mice in the Y-maze test [16-19], while NMDA receptor agonists 
enhance performance in such memory tasks [11]. Additionally, local 
intra-accumbens administration of NMDA antagonists impairs the 
ability of mice to locate the hidden platform in a short-term version 
of the Morris water maze test [20]. These results suggest that NMDA 

infusion, the mice were placed in one of the compartments and allowed 
to move freely for 10 min. The light intensity in the experimental room 
was 35 lux. An arm entry was defined as three legs entering one of the 
arms, and the sequence of entries was manually recorded. Each mouse 
performed one trial. An alteration was defined as entry into all three 
arms in consecutive choices. The percentage of spontaneous alteration 
was calculated as (actual alteration/maximum alteration)×100. At the 
completion of the intrahippocampal injection experiments, fronzen 
brain sections were examined under a light macroscope. Mice with 
injection needle placements outside of the boundaries of targeted areas 
were excluded from behavioral analysis. 

Infusion

For the infusion studies, Cav2.2 blocker, ω-conotoxin GVIA (10, 
50, or 100 pg/μL, Peptide Institute, Osaka, Japan) were dissolved in 
saline (vehicle). Under anesthesia and using standard stereotaxic 
procedures, stainless-steel guide cannulae (22-gauge) were implanted 
into the NAc (anterior to bregma, +1.7 mm; lateral to midline, ±1.0 
mm; ventral from the dura, +2.3 mm). Mice were allowed to recover 
for at least 1 week following surgery. The drug doses were determined 
according to previous report [13,15]. Mice that were not treated with 
drugs received an equivalent volume of vehicle. 

Histology

Histological verification of the cannula locations was performed 
at the end of behavioral testing. Mice were perfused transcardially 
with 0.9% saline, followed by 4% PFA. After extraction from the skull, 
the brains were postfixed in 4% PFA and then transferred to a 30% 
sucrose solution until sectioning. Coronal sections (40 μm thick, taken 
every 120 μm) were cut on a cryostat (–16°C) and mounted on glass 
microscope slides. After drying, the sections were stained with cresyl 
violet. 

Data analysis 

Data are presented as means ± standard error on the mean (SEM). 
Statistical analyses for the behavioral tests were conducted using Excel 
Statistics 2006 (SSRI, Tokyo, Japan). Data were analyzed using repeated 
measures ANOVA with Tukey’s test.

Results
To examine the effects of an intra-accumbens drug injection on 

spatial short-term memory in the Y-maze, we used four groups of 
male mice (n=10 each) given intra-accumbens injections of 0 (vehicle), 
1, 5, or 10 pg/side ω-conotoxin GVIA. There were no significant 
differences among groups in the number of arm entries [F(3, 36)=1.2, 
P>0.05] (Figure 1A). However, the groups significantly differed in the 
spontaneous alteration [F(3, 36)=111.5, P<0.01] (Figure 1B). The mice 
given 5 or 10 pg/ side ω-conotoxin GVIA showed fewer alterations 
than the mice given vehicle. Figure 2 shows the representative infusion 
cannula placement in the NAc. These results shows that blockade 
of Cav2.2-mediated NAc-dependent signaling impairs short-term 
memory. 

Discussion
In previous study, we have shown that intra-cerebroventricular 

or intra-hippocampal injection of Cav2.1 blocker of levetiracetam 
blocked the spontaneous alteration behavior [11]. We have also 
shown that intra-cerebroventricular or intra-hippocampal injection 
of Cav2.2 blocker of ω-conotoxin GVIA blocked the spontaneous 

Figure 1. Effects of intra-accumbens injections of ω-conotoxin GVIA on the number 
of total arm entries (A) and spontaneous alteration (B) in the Y-maze test. The data are 
presented as the mean ± standard error of the mean (SEM). **P<0.01 compared with the 
appropriate control (Tukey’s test).

Figure 2. This coronal drawing shows the location of the ω-conotoxin GVIA injection 
aimed at the nucleus accumbens (NAc). 
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receptor signaling within the NAc is involved in short-term spatial 
memory. Electrophysiological studies have shown that Ca2+ currents 
through Cav2.1 are found in the isolated NAc [21]. Heterozygous 
rolling Nagoya (rol/+) mice with a Cav2.1α1 mutation show normal 
Y-maze behavior [12]. In our previous study, although intra-accumbens 
injection of NMDA induced similar spontaneous alternations in wild-
type and rol/+ mice, injections of NMDA receptor antagonist MK-
801 (0.5  µg/side) or Cav2.1 inhibitor levetiracetam (0.1  µg/side) did 
not affect controls but decreased spatial cognition in rol/+ mice [12], 
suggesting that Cav2.1-mediated NMDA receptor signaling in the NAc 
is involved in short-term spatial learning and that combination of sub-
threshold doses of pharmacological agents can be useful for inducing 
phenotypes in silent mutants and for identifying functional signaling 
pathways. It has been reported that glutamatergic system is one of the 
neurotransmitter systems regulated by Cav2.2 [9,10]. Thus, mice given 
microinfusions with Cav2.2 blocker and glutamatergic compounds 
into the NAc may be a useful model for delineating mechanisms in the 
spatial memory formation associated with Cav2.2-mediated NMDA 
receptor signaling. 

In conclusion, we found that intra-accumbens administration 
of Cav2.2 blocker disrupted the spontaneous alternation behavior in 
the Y maze test. Our results suggest that Cav2.2-mediated signaling 
in the nucleus accumbens has an important role in spatial short-term 
memory. 
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