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Abstract
Neuronal voltage-gated calcium channels (VGCCs) including Cav2.2, mediate the mechanisms involved in the presynaptic release of neurotransmitters. The role of 
Cav2.2 in neural circuits underlying depression remains poorly understood. In this study, intracerebroventricular injection of the Cav2.2 inhibitor ω-conotoxin GVIA 
(5 pg/side) in mice increased depression-like behavior in the forced swimming and tail suspension tests. These results suggest that Cav2.2-mediated signaling plays 
a role in depressive behaviors.

Introduction
Voltage-gated Ca2+ (Cav) channels play an important role in 

regulating diverse neuronal functions attributed to elevated intracellular 
Ca2+ concentrations [1,2]. Cav channels are molecular complexes 
comprising α1, β, α2-δ, and γ subunits [1]. The α1 subunit is essential 
for channel function and determines fundamental channel properties 
[1]. Genes encoding 10 pore-forming α1 subunits and several splice 
variants have been identified and characterized [3]. 

At the presynaptic terminal, Cav2.2 (N type) channels mediate 
Ca2+-dependent exocytotic release of neurotransmitters [4]. Ca2+ influx 
via these channels triggers neurotransmitter release in a cooperative 
process with other components of the vesicle fusion machinery [5]. 
Given the pivotal role of Ca2+ channels in controlling neurotransmitter 
release, defects in the expression, localization, structure, or modulation 
of presynaptic Ca2+ channels may result in aberrant synaptic signaling, 

leading to various patterns of neural network dysfunction. Cav2.2 
channels have been reported to influence the release of dopamine [DA; 
6–8], serotonin [5-HT; 9], glutamate [10], gamma-aminobutyric acid 
[11], acetylcholine [12], and norepinephrine [NE; 13] from central 
neurons. In terms of clinical relevance, imbalances of neurotransmitters 
are strongly associated with depression  [14]. According to the 
monoamine hypothesis, depression can be ascribed to deficits in the 
major monoamine neurotransmitters (DA, 5-HT, and NE). As Cav2.2 
channels are involved in the regulation of neurotransmitter release, 
administration of a Cav2.2 blocker is expected to result in depressive 
behavior. 

In mice that received intracerebroventricular (i.c.v.) injections 
of ω-conotoxin GVIA, a Cav2.2 inhibitor, baseline levels of DA and 
5-HT were reduced in the striatum and frontal cortex [15]. The Cav2.2 
inhibitor also induced depressive behavior, as measured by the forced 
swimming test [16] and tail suspension test [17]. 

In the present study, the relationship between Cav2.2-mediated 
signaling and depression was investigated further. Mice were treated 
with i.c.v. injections of ω-conotoxin GVIA, and depression was 
assessed using forced swimming and tail suspension tests. 

Materials and methods
Mice 

All animal procedures were approved by the Animal Experiments 
Committee of Shanghai Jiao Tong University and RIKEN. C57BL/6J 
mice were provided by Charles River Japan (Kanagawa, Japan). The 
mice were given free access to water and food pellets (CRF-1; Oriental 
Yeast Co. Ltd., Tokyo, Japan) and housed under a 12/12-h light/dark 
cycle (lights on from 08:00 to 20:00) at 23 ± 1°C and 55 ± 5% humidity. 
We used separate groups of 2-month-old male mice for each of the 
behavioral tests. All experiments were conducted by investigators 
blinded to the treatment conditions at light phase.

Infusion

For the infusion studies, the Cav2.2 blocker, ω-conotoxin GVIA 
(100 pg/μL, Peptide Institute, Osaka, Japan) was dissolved in saline 
(vehicle). The drug dose was determined based on a previous report 
[15,18,19]. Non-treated mice received an equivalent volume of vehicle. 
Under anesthesia and using standard stereotaxic procedures, stainless-
steel guide cannulae (22-gauge) were implanted into the lateral ventricle 
(posterior to bregma, -0.34 mm; lateral to midline, ±0.9 mm; ventral 
from the dura, −2.3 mm), and mice were allowed to recover for at least 
1 week following surgery. The mice were briefly anesthetized with 
isoflurane to facilitate insertion of the injection cannula (26-gauge). 
Infusion into the lateral ventricle (0.1 μL/side) was accomplished at 
a rate of 0.05 μL/min 30 min before behavioral testing. The injection 
cannula was left in place for 2 min following infusion. 
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Open field test

Motor activity was measured by placing individual animals in a 
clear Plexiglas box (L × W × H: 30 × 20 × 15 cm). The box was then 
positioned in a frame on which infrared beams (Scanet SV-10, Tokyo, 
Japan) were mounted. The light intensity in the experimental room was 
60 lux. Beam interruptions were summed in 20 min.

Tail-suspension test

The apparatus consisted of a non-transparent compartment (L × W 
× H: 15.0 × 16.0 × 25.0 cm) with a hook (4.0 cm in length). The distance 
between the hook and floor was 21 cm.  Each mouse was hung from the 
hook using adhesive tape placed 2 cm from the end of its tail, and its 
behavior was recorded with a video camera for 7 min. The immobility 
time was evaluated between the 2nd and 7th min. The light intensity in 
the experimental room was 150 lux. The parameter recorded was the 
total amount of time (s) spent immobile.

Forced swimming test

Each mouse was placed in a 19-cm glass cylinder (11.0 cm in 
diameter) containing 13 cm of water at 23 ± 1°C. A mouse was deemed 
immobile when it floated and its hindlimbs appeared immobile, with 
only small movements of the forepaws used to keep the head above 
water. The light intensity in the experimental room was 150 lux. The 
behavior was recorded with a video camera for 7 min.  Immobility was 
recorded between the 2nd and 7th min.  The parameter recorded was the 
total amount of time (s) spent immobile.

Histology

Histological verification of the cannula locations was performed at 
the end of behavioral testing. Mice were perfused transcardially with 
0.9% saline, followed by 4% paraformaldehyde (PFA). After extraction 
from the skull, the brains were post-fixed in 4% PFA and then 
transferred to a 30% sucrose solution until sectioning. Coronal sections 
(40 μm thick, taken every 120 μm) were cut on a cryostat (-16°C) and 
mounted on glass microscope slides. After drying, the sections were 
stained with cresyl violet. 

Statistical analysis for behavioral results

The data are presented as the mean ± standard error of the mean 
(SEM). Statistical analyses were conducted using Excel Statistics 2006 
(SSRI, Tokyo, Japan). The data were analyzed using analysis of variance 
(ANOVA). Tukey’s test was performed when appropriate. The results 
were considered significant at 5% or lower probability of error.

Results
This study examined the effect of ω-conotoxin GVIA on depressive 

behavior. Two groups of male mice were given i.c.v. injections of either 
ω-conotoxin GVIA (5 pg/side) or vehicle.

In the open field test, no significant difference was observed in 
motor activity between vehicle-injected and ω-conotoxin GVIA-
injected mice (Figure 1). In both the tail suspension and forced 
swimming tests, ω-conotoxin GVIA-injected mice had significantly 
longer immobile times than vehicle-injected mice (Figure 2 and 3).

Mice with injection needle placements outside of the boundaries 
of the target areas were excluded from behavioral analyses (data not 
shown).

Discussion
The neurotransmission of monoamines is thought to control 

emotional behavior. Biological research in depression currently 
involves many aspects of neurotransmitter, hormone, and vitamin 

 

Figure 1. Open field test. The vehicle-injected or ω-Conotoxin GVIA-injected mice (n=10 
each) were allowed to explore the field freely for 20 min.

 
Figure 2. Tail suspension test. The vehicle-injected or ω-Conotoxin GVIA-injected mice 
(n=10 each) were suspended by the tail. Time spent immobile (s) was evaluated during the 
2nd to 7th minutes. The data are presented as means ± standard error of the mean (SEM). **P 
<0.01 compared with the appropriate control (Tukey’s test).
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metabolism, with metabolism of monoamine neurotransmitters 
being a major area of interest for over 40 years [20–23]. Neuronal Cav 
channels, including Cav2.1 and Cav2.2, are predominantly expressed 
at presynaptic neuronal terminals throughout the central nervous 
systems [9]. Cav channels mediate the release of neurotransmitters that 
are involved in depression; however, the role of different Cav channels, 
specifically Cav2.2, in the neural circuits underlying depression has not 
been explored. In the present study, we investigated the relationship 
between Cav2.2-mediated signaling and depression in mice that 
received i.c.v. injections of the Cav2.2 blocker ω-conotoxin GVIA. 

We first examined the effect of ω-conotoxin GVIA on motor 
activity by assessing immobility in the forced swimming and tail 
suspension tests. The open field test revealed no significant difference 
in motor activity between vehicle-injected and ω-conotoxin GVIA-
injected mice. In a previous study, we examined the impact of a subtle 
disruption of Cav2.2 channel functioning on motor activity using the 
activity wheel test [24]. Cav2.2 channel knockout mice showed normal 
activity during the light phase and increased activity during the dark 
phase. In the present study, conducted in the light phase, Cav2.2 
channel-dependent signaling had no effect on spontaneous activity in 
mice. In the forced swimming and tail suspension tests, ω-conotoxin 
GVIA-injected mice had significantly longer immobile times (i.e., 
increased depression-like behavior) compared with vehicle-injected 
mice. Overall, the results indicate that Cav2.2 channel-dependent 
signaling has an influence on depressive behaviors.  

In our previous study, baseline levels of DA and 5-HT were 
reduced in the striatum and frontal cortex in mice given ω-conotoxin 
GVIA [15]. Although emotional behavior may be affected by multiple 
neurotransmitter systems, our results suggest that Cav2.2 channel 
dysfunction and subsequent decreases in DA and 5-HT may be at 

least partially responsible for the observed depressive behavior in 
ω-conotoxin GVIA-injected mice. 

In conclusion, inhibition of Cav2.2-mediated signaling by the 
specific Cav2.2 blocker ω-conotoxin GVIA was found to induce 
behavioral deficits in the forced swimming and tail suspension tests. 
As Cav2.2 influences the release of DA and 5-HT [15], abnormalities 
in Cav2.2-mediated signal transduction may play a role in the 
pathophysiological mechanisms underlying depression. Additional 
electrophysiological studies of neurotransmitter release will help to 
elucidate the relationship between Cav2.2 signaling and depression.
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