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Abstract
Osteoprotegerin (OPG), a member of the tumor necrosis factor (TNF) receptor superfamily, suppresses osteoclast formation by preventing the binding of receptor 
activator of nuclear factor-kappa B ligand (RANKL) to receptor activator of NF-kappa B (RANK). Recent studies indicate that RANKL plays a critical role in the 
regulation of dendritic cells and macrophages. Indeed, RANK-RANKL interactions on these immune cells are involved in core host defense mechanisms against 
tumors and infection. Thus, OPG is thought to exert its effects by interfering with the RANKL-RANK interaction. While the role of OPG in bone metabolism 
are well described, little is known about its role in host defense. This review summarizes current knowledge about the role of OPG in pathologies such as cancer and 
microbial infections. 

Introduction
Osteoprotegerin (OPG) is a member of the tumor necrosis factor 

(TNF) receptor superfamily, originally characterized according to its 
ability to suppress osteoclast formation by preventing the binding 
of receptor activator of nuclear factor-kappa B ligand (RANKL) to 
receptor activator of NF-kappa B (RANK) on osteoclast precursor 
cells. In 1997, two independent research groups identified OPG 
as a key regulator of bone turnover that functions by inhibiting 
osteoclastogenesis [1,2]. In the following year, Yasuda et al. reported 
that these independent findings actually pertained to the same molecule 
[3]. Since OPG-deficient mice also exhibit vascular calcification, OPG 
is thought to be a key link between bone and cardiovascular disease 
[4]. OPG is a secretory glycoprotein comprising 401 amino acids, 21 of 
which make up a signal peptide that is cleaved to generate the mature 
form (380 amino acids); this mature form contains seven domains: 
domains 1–4 are cysteine-rich N-terminal domains harboring motifs 
homologous to the TNF receptor and are necessary and sufficient for 
binding to RANKL, thereby inhibiting osteoclast differentiation and 
activity; domains 5 and 6 contain apoptosis-mediating death domain-
homologous regions; and domain 7 is a C-terminal heparin-binding 
domain important for the interaction between OPG and proteoglycans. 
In addition, Cys 400 within domain 7 plays a central role in OPG dimer 
formation (Figure 1) [5]. 

OPG is initially produced as a glycosylated monomer of 55–62 
kDa, which then undergoes homodimerization before being secreted 
as a disulfide-linked homodimer (the mature 110–120 kDa form). The 
affinity of the OPG dimer for RANKL is much higher than that of the 
monomeric form [6]. OPG is expressed by many different cell types, 
including osteoclast precursors, mature osteoclasts, dendritic cells, B 
and T cells, fibroblasts, intestinal epithelial cells, vascular endothelial 
cells, and some cancer cells (e.g., breast and prostate cancers) [7]. The 
aim of this review is to provide an overview of the current knowledge 
about OPG-associated pathologies beyond bone remodeling, including 
cancer and microbial infections.

OPG prevents the RANKL-induced differentiation, fu-
sion, and activation of osteoclasts

Osteoclasts are multinucleated bone resorbing cells formed by 
cytoplasmic fusion of their mononuclear precursors, which belong 
to the myeloid lineage of hematopoietic cells that also give rise to 
macrophages [8]. Upon binding RANKL, RANK (expressed by 
osteoclasts) activates six major signaling pathways: NFATc1, NF-
kappa B, Akt/PKB, JNK, ERK, and p38, all of which play distinct 
roles in osteoclast differentiation, function, and survival [9-11]. OPG 
prevents the interaction between RANKL and RANK, thereby blocking 
osteoclast maturation [12].

OPG prevents TRAIL-induced apoptosis
In addition to regulating RANK-RANKL interactions during bone 

metabolism, OPG also stimulates cell survival by acting as a receptor 
for TNF-related apoptosis-inducing ligand (TRAIL) [13,14]. TRAIL is 
a member of the TNF superfamily, and induces apoptosis; it is secreted 
by normal tissues and preferentially induces apoptosis in tumor cells 
through the death domain receptors DR4 and DR5, both of which 
contain cytoplasmic death domains that activate apoptotic signaling 
pathways (Figure 2A) [15,16]. 

Results from clinical studies show that transformed endothelial 
cells that drive several types of tumors express higher levels of OPG than 
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corresponding normal tissues; in breast cancer, this level of expression 
correlates with tumor grade [17-19]. In vitro studies show that OPG 
increases endothelial cell proliferation, migration, and angiogenesis 
through integrin alpha V beta 3 [20,21], and that breast cancer cells 
stimulate OPG production by endothelial cells through direct cell 
contact [22]. Several studies indicate that the tumor-promoting effects 
of OPG in breast cancer cells occur, at least in part, via a TRAIL-
dependent pathway [18,23].

In addition to its ability to induce apoptosis in transformed tumor 
cells, TRAIL may also help to defend against microbial infections. 
Pathogenic microbes can induce TRAIL expression in both immune 
and non-immune cells and sensitize host cells to TRAIL-mediated 
apoptosis [24]. However, pathogenic microbes have evolved a variety 
of strategies to prevent TRAIL-mediated host cell death during the 
early stages of infection, which may enable them to replication and 
spread [25,26].

Figure 1. Molecular structure of OPG.

Figure 2. (A) TRAIL is secreted by normal tissues and preferentially promotes apoptosis of tumor cells or infected cells via death domain receptors (DR4 and/or DR5). Pathological cells 
produce OPG, which then blocks TRAIL-induced apoptosis.  (B) RANKL-RANK signaling between HPV-associated (pre)neoplastic cells and tolerogenic DCs expands the regulatory T 
cell population. HSV-1-infected skin lesion prevent virus-induced DC apoptosis and (eventually) promote the emergence of CD8+ effector T cells. (C) RANKL suppresses the production of 
proinflammatory cytokines by macrophages in response LPS. (D) RANKL secreted by activated B cells and T cells promotes osteoclast maturity, leading to pathological bone resorption.



Kobayashi-Sakamoto M (2015) Beyond bone remodeling–emerging functions of osteoprotegerin in host defense and microbial infection

 Volume 2(6): 384-390Integr Mol Med, 2015     doi: 10.15761/IMM.1000173

OPG regulates adaptive immune responses by control-
ling RANK-RANKL interactions on dendritic cells

RANKL and RANK were originally identified as a cytokine-
receptor pair that controls the function of dendritic cells (DCs) 
[27,28]. DCs are professional antigen-presenting cells that are critical 
for inducing adaptive immunity and tolerance. DCs develop form 
myeloid- or lymphoid-committed progenitor cells [29,30]. RANKL 
binds to RANK on the surface of DCs, activating the NF-kappa B and 
JNK pathways and upregulating Bcl-xl expression, thereby initiating 
antiapoptotic signaling [31,32]. Recent studies demonstrate a crucial 
function of OPG during DC activation. DCs from OPG-deficient mice 
show better survival than DCs from wild-type mice; this is likely due to 
the absence of OPG, resulting in sustained RANK-RANKL interactions 
and enhanced DC survival and cytokine production in response to 
lipopolysaccharide (LPS) [33]. Accordingly, Yun et al., showed that 
DCs from OPG-deficient mice are more effective than wild-type 
DCs at stimulating allogeneic T cells [34]. An overview of the studies 
indicating a role for OPG in host defense against microbes is presented 
in Table 1.

Human papillomavirus infection
Human papillomavirus (HPVs) are small DNA viruses that 

specifically infect keratinocytes at different sites on the body. The 
prototypic skin cancer-associated HPV type 5 induces expression 
of the viral E6 oncoprotein [35], which is necessary for malignant 
transformation. E6 interferes with DNA damage responses and inhibits 
UV-induced apoptosis, suggesting that HPV type 5 contributes to 
early-stage tumorigenesis [36,37]. Tomoins et al. showed that E6 
expression induces the secretion of OPG and interleukin (IL)-6, which 
inhibits UV-induced apoptosis in HPV-negative cell lines and primary 
human keratinocytes [38]. The authors concluded that increased 
HPV E6-induced secretion of both OPG and IL-6, but not either 
alone, may protect the infected host cell from UV-induced apoptosis 
via an autocrine mechanism, whereas a paracrine effect may protect 
neighboring non-HPV infected cells.

Furthermore, Demouline et al. demonstrated that HPV-associated 
cervical pre-neoplastic microenvironment promotes the emergence of 
tolerogenic dendritic cells, which acquire the ability to promote the 

differentiation of naïve CD4+ T cells into regulatory T cells (Figure 
2B) [39]. This phenomenon is caused by RANKL, which is secreted 
directly by cancer cells, and is abolished by OPG-mediated blockade 
of the RANKL/RANK signaling pathway. The authors suggested that 
the progression of genital HPV infections into pre-neoplastic lesions 
occurs because the antigens are not adequately recognized by the 
innate immune system, or not presented to the adaptive immune 
system. Expression of both RANKL and OPG is increased in pre-
neoplastic cervical lesions; however, OPG expression remains stable 
during cervical cancer progression, suggesting that OPG expression in 
cervical cancer is probably not sufficient to counteract the neoplastic 
effects of RANKL expressed by DCs. 

In addition, some reports present evidence that RANKL-mediated 
activation of T cells is associated with antimicrobial immunity [40-42]. 
For example, lymphocytic choriomeningitis virus and influenza virus 
can prime antigen-specific CD4+ T cells independently of the CD40 
pathway, and induction of such responses in CD40-deficient mice is 
greatly inhibited by soluble RANK [41]. These findings suggest that, 
under specific circumstances, OPG may interfere with priming of 
CD4+ T cells caused by viral infections.

Viral infections and the OPG/RANKL/RANK system
Viral infections are controlled by the immune system, and CD8+ 

cytotoxic T-lymphocytes have are crucial for viral clearance [43,44]. 
Herpes simplex virus type 1 (HSV-1) is responsible for the majority of 
cutaneous viral infections. Klenner et al., demonstrated that cutaneous 
RANK-RANKL signaling improves the priming capacity of antiviral 
CD8+ effector T cells during HSV-1 infection of the skin [45]. They 
found that cutaneous RANK-RANKL signaling prevents virus-induced 
Langerhans cell apoptosis, improves antigen transport to regional 
lymph nodes, and increases the priming capacity of lymph node DCs 
for CD8+ cytotoxic T-lymphocytes by upregulating expression of toll-
like receptor (TLR) 3 (Figure 2B). Importantly, injection of soluble 
RANKL protein into skin lesions protects mice from HSV-1 infection 
by inducing CD8+ antiviral effector T cells. Although the authors did not 
use recombinant RANK or OPG proteins to block RANKL signaling, 
these results suggest a potential role for OPG in HSV-1 infection.

Author, date Main finding Related diseases Source cells Target cells

Chino T et al., 2009 [33] DC from OPG-deficient mice survive better and produce more cytokines in 
response to LPS treatment than DC from wild-type mice. 

Inflammatory response ND DCs

Tomlins C et al., 2010 [38] E6 expression induces secretion of OPG and IL-6, which inhibit UV-induced 
apoptosis in HPV-negative cell lines and primary human keratinocytes.

HPV infection Infected keratinocytes HPV-negative 
keratinocytes

Demoulin SA et al., 2015 [39] The cervical pre-neoplastic microenvironment promotes the emergence of 
tolerogenic dendritic cells by RANK-RANKL interaction.  

HPV infection
Cervical cancer

Infected cells/
pre-neoplastic cells

DCs

Klenner L et al., 2015 [45] Cutaneous RANK-RANKL signaling upregulates CD8-mediated antiviral 
immunity during HSV infection.

HSV infection Infected skin lesion Langerhans cells

Castellanos-Gonzalez et al., 
2008 [50]

OPG secreted from Cryptosporidium-infected intestinal epithelial cells blocks 
TRAIL-induced apoptosis.

Cryptosporidium 
infection

Infected intestinal 
epithelial cells

Infected intestinal 
epithelial cells

Maruyama K et al., 2006 [58] Pretreatment with recombinant RANKL reduces the secretion of inflammatory 
cytokines by macrophages.

Endotoxic shock
Bacterial infection

ND Macrophages

Shimamura M et al., 2014 [59] RANKL exposure prevents LPS-triggered neuronal cell death. Ischemic brain ND Microglias

Ashcroft AJ et al., 2003 [62] T cell-mediated intestinal inflammation in IL-2-deficient mice is mitigated by 
OPG. 

Inflammatory bowel 
disease

ND DCs

Chen B et al., 2014 [69]
Kawai T et al., 2006 [70]

RANKL, secreted by B cells and T cells activated by periodontal pathogens, 
promotes osteoclast maturation, leading to alveolar bone resorption.

Periodontitis B cells
T cells

Osteoclasts

DCs, dendritic cells; OPG, osteoprotegerin; RANK, receptor activation of nuclear factor kappa B; RANKL, RANK ligand; TRAIL,TNF-related apoptosis-inducing ligand;
LPS, lipopolysaccharide; HPV, human papillomavirus; HSV, herpes simplex virus; ND, not determined

Table 1. Studies examining the association between osteoprotegerin and microbes (including LPS).
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Cryptosporidium infection
Cryptosporidium parasites are pathogens of human intestinal 

epithelial cells. To complete their life cycle, Cryptosporidium requires 
epithelial cells to survive for at least 48 h [46]. Data from studies of 
infected intestinal tissues suggest that apoptosis is increased in 
both infected and adjacent cells [46,47]. Initial invasion induces 
apoptosis of the infected cell; however, within a few hours, the 
parasite activates host cell NF-kappa B, which in turn activates an 
antiapoptotic mechanism [48, 49]. In vitro infection of human explants 
demonstrated upregulation of OPG in infected tissues [50]. These 
results suggested that OPG secreted from infected intestinal epithelial 
cells blocks TRAIL-induced apoptosis (Figure 2A). Interestingly, the 
authors also showed that the addition of recombinant OPG increased 
the infection rate to levels comparable with that observed in untreated 
cells. Furthermore, other studies suggest that pretreatment with 
OPG protects endothelial cells against detachment and apoptotic cell 
death induced by cysteine proteinases generated by Porphyromonas 
gingivalis, a major periodontal bacterium [51,52].

OPG and RANKL regulate proinflammatory cytokine 
production by macrophages

Macrophages are myeloid immune cells that reside in nearly 
all tissues; however, they display marked heterogeneity in terms of 
location, function, and cell surface marker expression. Activation of 
receptors such as TLRs or IL-1R on macrophages leads to activation 
of the I kappa B (IkB) kinase complex, resulting in its degradation 
[53,54]. IkB degradation promotes the release of free NF-kappa B, 
which then translocates to the nucleus and binds to the promoters of 
inflammatory genes to trigger their transcription. In addition to the 
“classical” NF-kappa B pathway, an “alternative” NF-kappa B signaling 
pathway has been described [55,56]. This signaling pathway is activated 
in response to developmental signals such as CD40 or RANK. Dejardin 
et al., suggested that crosstalk occurs between these pathways [57]. 
In addition, Maruyama et al., suggested that macrophage activation 
is regulated by the RANKL/RANK/OPG system via TLRs (Figure 
2C) [58]. They also showed that pretreatment of macrophages with 
recombinant RANKL reduced their secretion of inflammatory cytokines 
in response to stimulation by bacteria and their components, such as 
LPS, flagellin, and CpGDNA [58]. Strikingly, prior administration of 
RANKL protected mice from LPS-induced death [58]. Other groups 
report that RANKL can prevent LPS-triggered neuronal cell death 
[59]. Also, a high serum OPG level is associated with an unfavorable 
outcome during ischemic stroke [60]. Enhanced RANKL/RANK 
signaling in OPG-deficient mice or recombinant RANKL-treated mice 
contributes to a reduction in infarction volume and brain edema by 
controlling post-ischemic inflammation [59]. In vitro, RANKL inhibits 
TLR4-mediated neuronal cell death in mixed cultures containing 
neurons and glial cells (Figure 2C) [59]. The molecular mechanisms 
by which RANKL affects TLR signaling in microglia remain to be 
clarified; however, RANKL treatment reduced expression of myeloid 
differentiation primary response 88 (MyD88) by bone marrow-derived 
macrophages in vitro [58]. Thus, RANKL might function downstream 
of TLR signaling in both microglia and macrophages. These data reveal 
therapeutic potential of RANKL for acute inflammatory diseases.

Inflammatory bowel disease 
The role of RANKL signaling in the immune response has been 

studied using an IL-2 deficient mouse model, which is a model of 
spontaneous autoimmune disease [61]. Using this system, Ashcroft 

et al., reported that OPG affects gut inflammation, DC numbers, and 
macrophage activation in mice with inflammatory bowel and bone 
disease [62]. T cell-mediated intestinal inflammation in IL-2-deficient 
mice is significantly mitigated by administration of OPG, as is the 
decrease in the numbers of activated DCs in the intestine. By contrast, 
Stolina et al. showed that OPG overexpression does not cause obvious 
changes in immune responses [63]. Taken together, these results 
indicate that OPG may modulate inflammatory responses in the gut, 
but that such modulation may occur only under specific circumstances, 
or redundantly with other cytokine signals [64].

Periodontal disease
Periodontitis is an inflammatory disease characterized by 

periodontal pocket formation and alveolar bone resorption. Levels 
of RANKL mRNA are higher in cases of advanced periodontitis 
than in cases of moderate periodontitis or in healthy groups [65]. 
Excessive RANKL expression promotes the production of mature 
osteoclasts, which in turn leads to alveolar bone resorption. On the 
other hand, expression of OPG is associated with endothelial cells, and 
is significantly lower in periodontitis tissues than in healthy gingival 
tissue [66]. In addition, elevated RANKL levels are associated with the 
presence of P. gingivalis in clinical periodontal tissue samples [67]. 
RANKL and/or OPG are secreted by periodontal ligament fibroblasts, 
gingival fibroblasts, endothelial cells, and activated B and T cells 
[68,69]. Confocal microscopic analysis revealed that B and T cells are 
the cellular source of RANKL in bone resorptive lesion of periodontal 
disease [70] (Figure 2D). 

During the early stages of periodontal disease, RANKL may 
be essential for the presence of macrophages and dendritic cells in 
periodontal tissue; these cells engulf and destroy pathogens. Apart 
from during osteoclastogenesis, our understanding of how the OPG/
RANKL/RANK system regulates the response of periodontal tissue 
to periodontitis pathogens is rather limited. Further research is 
necessary to clarify the role of the OPG/RANKL/RANK system in the 
development of periodontitis.

OPG serum levels and infectious diseases
Epidemiologic studies suggest that serum OPG levels correlate 

with age, diabetes, hypertension, osteoporosis, and cardiovascular 
mortality [7]. OPG is expressed by arterial smooth muscle cells [71], in 
pulmonary artery smooth cells [72], and in the Weibel-Palade bodies 
(WPB) of endothelial cells in association with von-Willebrand factor 
(VWF) [73]. 

Some studies show that microbial infections affect the RANKL/
OPG axis in the plasma. Human immunodeficiency virus type-1 
(HIV-1), which causes chronic systemic inflammation, increased 
levels of proinflammatory cytokines, and helper T cell depletion, 
is associated with reduced expression of RANKL and a reduced 
RANKL/OPG ratio in the plasma [74]. In addition, HIV-infected 
patients have a significantly greater risk of cardiovascular disease 
and osteoporosis than non-infected individuals. Immune activation 
and immunosenescence of CD8+ T cells, together with OPG plasma 
levels, might be associated with the development and progression of 
early atherosclerosis [75]. Furthermore, a recent study examining a 
HIV transgenic rat model reported HIV-induced bone loss, whereby 
HIV infection leads to a decline in the frequency of B cells secreting 
OPG coupled with an increase in the frequency of B cells secreting 
RANKL [76]. These studies suggest that interfering with OPG may be 
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a therapeutic option for infectious disease and chronic diseases such as 
cardiovascular disease or osteoporosis.

Djamiatun et al. showed that severe dengue hemorrhagic fever with 
thrombocytopenia, bleeding, and plasma leakage, is associated with 
exocytosis of WPB and increased circulating levels of VWF propeptide 
and OPG [77]. They suggested that the high OPG plasma levels observed 
in dengue fever may interfere with the antiviral and immune effects of 
TRAIL and with the RANK-RANKL system. On the other hand, an 
epidemiologic study reported that a single-nucleotide polymorphisms 
in the OPG gene are associated with an increased susceptibility to 
traveler’s diarrhea suffered by North American travelers to Mexico 
[78]. These studies suggest that OPG expression may correlate with 
susceptibility to infection. It remains to be established whether OPG is 
the cause or effect of infection.

Conclusion
OPG is mainly regarded as an antiresorptive cytokine that functions 

principally by binding to RANKL. In addition, accumulating evidence 
suggests that RANKL is important for immune responses; therefore, 
its role in host defense has received considerable attention. OPG is 
secreted by many types of cell in the context of several pathologies. In 
addition, OPG regulates the functions of dendritic cells, macrophages, 
and osteoclasts, which are highly specialized cells and closely related 
through the myeloid lineage. As described above, OPG is expected to 
have multifarious functions; however, the role played by this molecule 
in processes other than bone metabolism, in particular in relation to 
immune reactions, remain unclear. Therefore, further work is required 
to identify how OPG functions in host defense. Gaining insight into 
the various roles of OPG will help the development of new therapeutic 
strategies for inflammatory diseases, cancer, and microbial infections.
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