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Abstract
Many drugs, such as sulfonylurea, rapid-acting insulin secretagogues, biguanides, thiazolidines, alpha-glucosidase inhibitors, sodium glucose cotransporter 2 inhibitors, 
and dipeptidyl peptidase-4 inhibitors, have been developed for treating diabetes orally. Currently, it is possible to choose from these drugs to specifically treat the 
condition of the individual patient. However, blood glucose control of most oral diabetes drugs gradually diminishes, necessitating blood glucose control by insulin. 
It has been indicated that the glucotoxicity and lipotoxicity of oral diabetes drugs cause malfunction of the pancreatic β cells, leading to a decrease in the pancreatic 
β cells by apoptosis. Oral diabetes drugs that can control blood glucose levels and protect the pancreatic β cells are under development. In this review, we will discuss 
the current developmental status of oral diabetes drugs and the possibility of treatments that can preserve the function of pancreatic β cells.

Introduction
According to an announcement by the International Diabetes 

Federation (IDF) in 2014, the number of people with diabetes is 
387 million worldwide (prevalence, 8.3%) [1]. Diabetes is a chronic 
disease that significantly decreases the quality of life (QOL) in patients 
through complications such as retinopathy, neuropathy, nephropathy, 
and cardiovascular disorders. Not only the medical burden, but also 
the economic burden is huge. Patients with type 2 diabetes account 
for 90% of diabetes cases, and the incidence of type 2 diabetes is 
particularly increasing in people 40-59 years of age [1]. It is expected 
that appropriate blood glucose control be carried out from an early 
stage to prevent diabetic complications (especially cardiovascular 
events) that can lead to decreased QOL in patients [2]. However, the 
United Kingdom Prospective Diabetes Study (UKPDS) reported that, 
with increasing age, functional decline of the pancreatic β cells occurs; 
the pancreatic β cells are important for blood glucose control, and 
blood glucose control therefore becomes worse when their function 
declines [3]. In addition, a five-year follow-up survey conducted by the 
“A Diabetes Outcome Progression Trial” (ADOPT study) confirmed 
that blood glucose control by metformin or sulfonylurea (SUs) worsens 
with age, although blood glucose is well-controlled just after these 
drugs are first administered [4]. The age-related decrease in pancreatic 
β cell function is considered to be associated with lipotoxicity 
engendered by free fatty acids [5-7]. It is known that free fatty acids 
promote glucose-stimulated insulin secretion (GSIS) in pancreatic β 
cells via the pathway of G protein-coupled receptor 40 (GPR40) or the 
pathway of intracellular fatty acyl-coenzyme A (FA-CoA) [8,9] (Figure 
1). However, the exposure of pancreatic β cells to highly concentrated 
free fatty acids over the long term increases the expression of carnitine 
palmitoyltransferase1 (CPT-1) and uncoupling protein-2 (UCP-2) 
and decreases FA-CoA levels, leading to a decrease in GSIS [5-7]. 
Moreover, it is considered that apoptosis of pancreatic β cells is easily 
induced by oxidative stress caused by glucotoxicity and oxidized low-
density lipoprotein (LDL) [10,11]. It has been confirmed in diabetic 
patients and in a diabetic mouse model that pancreatic β cells decrease 
by apoptosis [12,13]. In addition, hypoglycemia is of concern because 
the promotion of insulin secretion by SUs does not depend on the 
concentration of glucose [14]. Although strict blood glucose control 

is important for the inhibition of cardiovascular events in diabetic 
patients [2], hypoglycemia increases the risk of cardiovascular events 
[15]. Therefore, medicines that promote GSIS or maintain pancreatic β 
cell function are needed.

Incretin-based drugs expected to protect pancreatic β 
cells

Incretins are gastrointestinal hormones secreted from the small 
intestine. The two main incretins are glucagon-like peptide-1 (GLP-
1) and glucose-dependent insulinotropic polypeptide (GIP) (Figure 1). 
Approximately 10 years ago, the US Food and Drug Administration 
(FDA) approved exenatide, which is a GLP-1 analogue and one of 
several incretin-based drugs. The relationship between exenatide 
therapy and the risk of pancreatitis has been pointed out in case 
reports that were published after the clinical trial and release of the 
drug [16,17]. However, the increased risk for pancreatitis produced 
by incretin-based drugs was negated by the results of meta-analysis 
studies and cohort studies [18,19]. In addition to the promotion of 
GSIS, incretin-based drugs also protect pancreatic β cells through long-
term administration [20-22].

Lipotoxicity, which causes malfunction of pancreatic β cells, can be 
reduced by the ATP-binding cassette, subfamily A member 1 (ABCA1) 
transporter, which promotes cholesterol efflux from cells. Loss of 
function of ABCA1 in pancreatic β cells results in the accumulation 
of cholesterol and a reduction in insulin secretion [23,24]. In contrast, 
increased expression of ABCA1 leads to improved insulin secretion 
and protection of pancreatic β cells from lipotoxicity [25]. Li et al. 
reported that exendin-4, a GLP-1 agonist, induced the expression 
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of ABCA1 in pancreatic β cells via the CaMKK/CaMKIV signaling 
pathway [26]. Therefore, the induction of ABCA1 by GLP-1 is likely to 
protect pancreatic β cells from lipotoxicity. In addition, GLP-1 agonists 
induce the expression of B-cell lymphoma 2 (BCL2), an anti-apoptotic 
protein, and reduce the expression of caspase-3, a protein with a central 
role in the execution phase of apoptosis. GLP-1 agonists also inhibit 
apoptosis induced by glucose or fats [27,28]. Thus, it is considered that 
GLP-1 agonists function to protect pancreatic β cells as well as improve 
their insulin secretion.

Development of oral diabetes drugs
Incretin-based drugs offer superior GSIS promotion and protect 

pancreatic β cells, and have extensively changed the treatment of type 
2 diabetes. Incretin-based drugs must be administered by injection 
because incretin-based drugs are GLP-1 analogues. Thus, incretin-
based drugs have the disadvantage that they cannot be administered 
to all patients, necessitating the development of new oral diabetes 
drugs. Candidates for new oral diabetes drugs are G protein-coupled 
receptor (GPR) 40 agonists, GRP119 agonists, glucokinase activators, 
and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors 
[29-37] (Tables 1 and 2).

Agonists for GPR40 and GPR119

GRP40 is expressed in pancreatic β cells and the intestinal tract 

[9,38]. GSIS is enhanced by an inositol-3-phosphate-mediated increase 
in the intracellular calcium concentration via GRP40 in pancreatic β 
cells (Figure 1) [9,39,40]. The tissue distribution of GPR40 overlaps 
with GPR119, a Gs-coupled receptor [41,42]. GSIS in pancreatic β 
cells is also enhanced by a cyclic AMP (cAMP)-mediated increase in 
the intracellular calcium concentration via GRP119 [42]. Moreover, 
both GPR40 and GPR119 are expressed in K and L cells in the small 
intestine, and lipids induce GLP-1 and GIP via GPR40 or GPR119 
[9,29,43]. Thus, it may be possible for agonists for GPR40 and GPR119 
to enhance GSIS by the direct stimulation of pancreatic β cells and 
induction of incretins. Moreover, since it is possible to administer 
agonists for GPR40 and GPR119 orally (Table 1), they are expected 
to be developed as alternative drugs for GLP-1 analogues that are 
administered by injection only. At least GPR40 agonists do not cause 
lipotoxicity [44,45].

Fasiglifam (TAK-875) (Tables 1 and 2), the most-developed GPR40 
agonist, effectively reduces blood glucose. However, the development 
of fasiglifam was stopped due to its hepatotoxicity [46]. There are 
dozens of candidate agonists for GPR40 and GPR119. JTT-851, MBX-
2982, and DS-8500a (Table 2) are in phase II trials, and are expected to 
become new oral diabetes drugs [29-31].

Glucokinase activators 

Pancreatic β cells function as glucose sensors and control GSIS. 

Figure 1. The mechanisms of major diabetes drugs.
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Target Compound Company Status Ref.

GPR40 agonist

GPR119 agonist

glucokinase activator

11β-hydroxysteroid dehydrogenase type 1
(11β-HSD1) inhibitor

Other

Fasiglifam (TAK-875)
JTT-851
LY2881835

PSN821
MBX-2982
GSK1292263
DS-8500a

TAK-329
PF-04937319
AZD6370
AZD1656
Piragliatin

PF-00915275 
INCB-13739

Colestilan

Takeda
Japan Tobacco
Eli Lilly

Prosidion
CymaBay Therapeutics
GlaxoSmithKline
Daiichi-Sankyo

Takeda
Pfizer
AstraZeneca
AstraZeneca
Roche

Pfizer
Incyte

Mitsubishi Tanabe 

Phase3  discontinued
Phase2
Phase1

Phase2  interruption
Phase2 
Phase2  discontinued
Phase2

Phase1  discontinued 
Phase2
Phase1  discontinued
Phase1  discontinued
Phase2 

Phase1
Phase2

Phase2  additional indication

46
29
29

30
30
30
31

33
32
56
57
52

34
64

68

Table 1. The different types of oral diabetes drugs under development.

Insulin from pancreatic β cells inhibits gluconeogenesis and induces 
glycogen synthesis in the liver, which is the important organ in 
controlling blood glucose. Glucokinase is the rate-limiting enzyme 
that converts glucose to glucose-6-phosphate during glycolysis. The 
activity of glucokinase is reduced in the livers of diabetic patients [47]. 
Glucokinase activators, which activate glucokinase by binding to the 
allosteric site, are expected to promote glycometabolism in the liver 
and promote increased control of blood glucose [48]. In addition, it is 
considered that glucokinase activators contribute to the promotion of 
insulin secretion in pancreatic β cells via the ATP-dependent potassium 
channel that is opened by the glucose-dependent increase of ATP 
(Figure 1) [49]. Moreover, glucokinase activators stimulate the growth 
of pancreatic β cells and inhibit apoptosis caused by oxidative stress 
and glucotoxicity [50,51]. In a mouse model of diabetes, glucokinase 
activators have been shown to effectively reduce blood glucose and 
increase pancreatic β cells [49,52]. PF-04937319 and piragliatin 
(Tables 1 and 2) have been shown to effectively control blood glucose 
in clinical trials [53,54]. Although AZD1656 and AZD6370 can also 
effectively control blood glucose just after administration [55,56], their 
effectiveness in controlling blood glucose was found to decrease with 
long-term administration [57,58]. More clinical trials of glucokinase 
activators are necessary.

11 β-HSD1 inhibitors

11β-HSD1 is expressed in hepatocytes and adipocytes and converts 
cortisone to cortisol (Figure 1). The expression level of 11β-HSD1 is 
up-regulated in the adipose tissue of patients with acquired obesity. 
Cortisol induces insulin resistance and the secretion of inflammatory 
cytokines, such as tumor necrosis factor-α, interleukin (IL)-1, and IL-
6, by activating the glucocorticoid receptor in adipocytes (Figure 1) 
[59,60]. Since a high-fat diet did not induce diabetes and dyslipidemia 
in 11β-HSD1–knockout mice, it is suggested that 11β-HSD1 is 
associated with the progression from obesity to insulin resistance and 
diabetes [61,62]. Metformin, a first-line drug for diabetes, together 
with INCB-13739 (Table 1), an 11β-HSD1 inhibitor, resulted in a 
24% reduction in homeostasis model assessment-insulin resistance 
(HOMA-IR, the index of insulin resistance) and a 0.6% reduction in 
glycated hemoglobin (HbA1c) compared to metformin only [63,64]. 

Thus, 11β-HSD1 inhibitors can be candidate drugs for diabetes with 
obesity.

Other diabetes drugs under clinical trials

Many patients with type 2 diabetes also have dyslipidemia, which 
leads to insulin resistance and lipotoxicity in pancreatic β cells. 
Therefore, treatment of dyslipidemia in addition to diabetes can improve 
blood glucose levels. Colestilan (Table 1) is one dyslipidemia drugs 
that improves hypercholesterolemia and promotes the metabolism of 
cholesterol to bile acid through facilitating bile acid secretion. It has 
been known that colestilan reduces blood glucose in diabetic patients 
[65]. Moreover, colestilan has been observed to increase GLP-1 levels 
as well as reduce cholesterol levels in a mouse model of diabetes [66,67]. 
In a 12-week clinical trial conducted by Kondo et al., patients with type 
2 diabetes received colestilan, which reduced not only LDL cholesterol 
levels, but also HbA1c, compared with patients with type 2 diabetes 
who received placebo therapy [68]. Administration of colesevelam, a 
dyslipidemia drug, also reduced LDL and HbA1c in patients with type 
2 diabetes [69]. Colestilan is expected to become the diabetes drug of 
choice for treating patients with diabetes having high LDL cholesterol.

Oral diabetes drugs expected to protect pancreatic β cells

Diabetes treatment in the past has focused on the glucotoxicity 
created by high blood glucose levels. An important focus for diabetes 
treatment has been the development of drugs to control blood glucose 
levels by promoting insulin secretion. However, the importance of 
protecting pancreatic β cells and not causing hypoglycemia has been 
recognized.

Currently, dipeptidyl peptidase-4 (DPP-4) inhibitors, incretin-
based drugs, and GLP-1 analogues are already on the market; these 
drugs are the most useful because they protect pancreatic β cells as 
well as control blood glucose. In addition, although the present GLP-1 
analogues must be administered once daily, a new GLP-1 analogue has 
been developed for administration once weekly [70].

In this review, we described oral diabetes drugs under development 
that aim to protect pancreatic β cells and decrease insulin resistance. 
New oral diabetes drugs are expected to provide different types of 
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Compound Structures Ref.

Fasiglifam
(TAK-875) 29

LY2881835

 

29

MBX-2982 30

GSK1292263 30

PF-04937319 34

AZD1656 Pub Chem 
16039797

Piragliatin 34

PF-00915275 36,37

Table 2. Structures of diabetes drugs under development.
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treatment that can be adapted for the particular conditions of individual 
diabetic patients.
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