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Abstract
Neuronal voltage-gated Cav2.2 channels mediate the presynaptic machinery responsible for the release of neurotransmitters. In our previous studies, mice that 
received intracerebroventricular injections of ω-conotoxin GVIA, a Cav2.2 blocker, exhibited decreased baseline levels of dopamine and serotonin within the striatum 
and frontal cortex, deficits that resulted in depressive behaviors. However, the role of Cav2.2 in neural circuits underlying anxiety remains poorly understood. In 
the present study, intracerebroventricular injection of ω-conotoxin GVIA (5 pg/side) in mice resulted in behavioral deficits in the elevated plus maze, light-dark 
exploration, and marble burying tests. These results indicate that inhibition of Cav2.2-mediated signaling induces alterations in the neuronal network involved in 
anxiety-related behaviors. 

Introduction
At the presynaptic terminal, two major voltage-gated Ca2+ channel 

types, Cav2.1 (P/Q-type) and Cav2.2 (N-type), are critically involved 
in the Ca2+-dependent exocytotic release of neurotransmitters [1]. 
Ca2+ influx via these channels triggers neurotransmitter release in 
cooperation with other components of the vesicle fusion machinery 
[2,3]. Given the pivotal role of Ca2+ channels in controlling 
neurotransmitter release, defects in the expression, localization, 
structure, or modulation of presynaptic Ca2+ channels may result 
in aberrant synaptic signaling leading to various patterns of neural 
network dysfunction. Cav2.2 channels reportedly influence the release 
of dopamine [4–6], serotonin [7], glutamate [8], gamma-aminobutyric 
acid [GABA]; [9], acetylcholine [10], and norepinephrine [11] from 
central neurons. 

Anxiety disorders (panic disorder/agoraphobia, generalized 
anxiety disorder, social phobia, and specific phobias) are the most 
common mental illnesses. Anxiety disorders are most likely caused by 
a combination of biological, psychological, and environmental factors. 
Most individuals with these disorders appear to have a biological 
vulnerability to stress, making them more susceptible to environmental 
stimuli than the rest of the population. Studies suggest that an imbalance 
among certain neurotransmitters contributes to anxiety disorders 
[12,13]. The neurotransmitters targeted in anxiety disorders are 
dopamine, serotonin, and GABA. Serotonin appears to be particularly 
important in feelings of well-being, and deficiencies are highly related 
to anxiety and depression [12,13]. Thus, because the precise regulation 
of neurotransmitter release via Cav2.2 channels plays an important role 
in the functioning of neuronal circuits, alterations in Cav2.2-mediated 
signaling induces anxiety and depressive disorders. 

In previous studies, mice that received intracerebroventricular 
(i.c.v.) injections of ω-conotoxin GVIA, a Cav2.2 blocker, exhibited 
decreased baseline levels of dopamine and serotonin within the 

striatum and frontal cortex [14] and showed deficits in depressive 
behavioral tests [15]. However, the role of Cav2.2 in neural circuits 
underlying anxiety remains poorly understood. Anxious behavior is 
assessed using the elevated plus maze [16], light-dark exploration [17], 
and marble burying [18] behavioral tests. 

In the present study, to investigate the relationship between 
Cav2.2-mediated signaling and anxious behavior, mice administered 
i.c.v. ω-conotoxin GVIA were assessed using the elevated plus maze, 
light-dark exploration, and marble burying behavioral tests. 

Materials and methods
Mice 

All animal procedures were approved by the Animal Experiments 
Committee of Shanghai Jiao Tong University and RIKEN. C57BL/6J 
mice were provided by Charles River Japan (Kanagawa, Japan). The 
mice were given free access to water and food pellets (CRF-1; Oriental 
Yeast Co. Ltd., Tokyo, Japan) and housed under a 12/12-h light/dark 
cycle (lights on from 08:00 to 20:00) at 23 ± 1°C and 55 ± 5% humidity. 
We used separate groups of 2-month-old male mice for each of the 
behavioral tests. All experiments were conducted during the light 
phase by investigators blinded to the treatment conditions.
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Infusions

For the infusion studies, the Cav2.2 blocker ω-conotoxin GVIA 
(100 pg/μL, Peptide Institute, Osaka, Japan) was dissolved in saline 
(vehicle). The drug dose was determined based on a previous report 
[15,19,20]. Control mice received an equivalent volume of vehicle. 
Under anesthesia and using standard stereotaxic procedures, stainless-
steel guide cannulae (22-gauge) were implanted into the lateral ventricle 
(posterior to bregma, -0.34 mm; lateral to the midline, ±0.9 mm; ventral 
from the dura, -2.3 mm), and mice were allowed to recover for at least 
1 week following surgery. The mice were briefly anesthetized with 
isoflurane to facilitate insertion of the injection cannula (26-gauge). 
Infusion into the lateral ventricle (0.1 μL/side) was accomplished at 
a rate of 0.05 μL/min 30 min before behavioral testing. The injection 
cannula was left in place for 2 min following infusion. 

Elevated plus maze test

The apparatus consisted of two open arms (L × W: 30 × 5 cm) and 
two closed arms (L × W × H: 30 × 5 × 15 cm) that extended from a 
common central platform (L × W: 5 × 5 cm). A small raised lip (0.3 
cm) around the perimeter of the open arms prevented the mice from 
falling. The apparatus was made of Plexiglas®, with a gray floor and 
walls, and was elevated 45 cm above floor level. At the beginning of 
each experiment, a mouse was placed on one of the open arms with 
its head directed toward the central platform. The mice were allowed 
to explore the apparatus freely under 20-lux illumination for 10 min. 
Behavior was recorded using an overhead video camera. Arm entry 
was defined as all four legs entering into one of the arms. The number 
of transitions between the arms, the number of entries into the open 
arms, and the time spent in the open arms were measured.

Light-dark exploration test

The apparatus consisted of two compartments: a dark compartment 
(L × W × H: 15 × 10 × 20 cm) and a light compartment (L × W × H: 
20 × 15 × 20 cm). The dark compartment had a lid on top and was 
made of black Plexiglas®, whereas the light compartment was open at 
the top and was made of white Plexiglas®. A black Plexiglas® tunnel (L 
× W × H: 10 × 7 × 4.5 cm) separated the dark box from the light box. 
The light intensity in the experimental room was 100 lux. A mouse 
was placed in the dark compartment, and its behavior was recorded 
on videotape over a 10-min period. The number of transitions between 
the compartments and the time spent in the light compartment were 
measured. A mouse with all four paws in the light compartment was 
considered to be fully within the light compartment.

Marble burying test

Mice were individually placed in transparent polycarbonate cages 
(L × W × H: 30 × 30 × 30 cm) containing a 5-cm layer of sawdust and 
25 glass marbles (2.5 cm in diameter) evenly spaced against the walls of 
the cage. A mouse was placed in the cage, and marble-burying behavior 
was recorded using a video camera for 20 min. The light intensity in 
the experimental room was 50 lux. The number of marbles that were 
buried at least two-thirds in sawdust and the time spent exhibiting 
marble-burying behavior were evaluated.

Statistical analysis of the behavioral results

The data are presented as the means ± standard error of the mean 
(SEM). Statistical analyses were conducted using Excel Statistics 
2006 (SSRI, Tokyo, Japan). The data were analyzed using analysis of 
variance. Tukey’s test was performed when appropriate. The results 

were considered significant at a 5% or lower probability of error.

Results
The present study examined the effects of i.c.v. injections of 

ω-conotoxin GVIA on anxious behaviors. Two groups of male mice (n 
=10 each) were administered i.c.v. injections of either vehicle or 10 pg/
side ω-conotoxin GVIA for each test.

In the elevated plus maze (Figure 1), the total number of arm 
entries did not differ significantly between vehicle-injected and 
ω-conotoxin GVIA-injected mice. The number of open arm entries 
differed significantly between vehicle-injected and ω-conotoxin GVIA-
injected mice; the number of open arm entries was significantly less 
for ω-conotoxin GVIA-injected mice compared with vehicle-injected 
mice. 

In the light-dark exploration test (Figure 2), the number of 
transitions between the light and dark boxes did not differ significantly 
between vehicle-injected and ω-conotoxin GVIA-injected mice. The 
time spent in the light box differed significantly between vehicle-
injected and ω-conotoxin GVIA-injected mice; the ω-conotoxin 
GVIA-injected mice spent significantly less time in the light box 
compared with vehicle-injected mice.
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Figure 1. Elevated plus maze. The vehicle- or ω-conotoxin GVIA-injected mice were 
allowed to explore the maze freely for 10 min. The total number of entries was counted (A). 
The number of entries into the open arms is expressed as a percentage of the total number 
of arm entries (B). The time spent in the open arms is expressed as a percentage of the total 
arm entry time (C). The data are presented as means ± standard error of the mean (SEM). 
*P < 0.05 compared with the appropriate control. 
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In the marble burying test (Figure 3), the number of marbles buried 
by ω-conotoxin GVIA-injected mice was greater than that buried 
by vehicle-injected mice. A significant induction in the duration of 
marble-burying behavior was observed in ω-conotoxin GVIA-injected 
mice compared with vehicle-injected mice.

Discussion
Neuronal Cav2.2 channels are expressed predominantly at 

presynaptic neuronal terminals throughout the central nervous system 
and mediate neurotransmitter release [1-3]. In our previous study, 
mice that received i.c.v. injections of the Cav2.2 blocker, ω-conotoxin 
GVIA, exhibited decreased baseline levels of dopamine and serotonin 
within the striatum and frontal cortex [14]. The neurotransmission 
of monoamines is thought to control emotional behavior [6-11,21-
24]. Although emotional behavior may also be mediated by other 
neurotransmitter systems, decreased levels of dopamine and serotonin 

might be at least partly responsible for the emotional behaviors. 
Indeed, ω-conotoxin GVIA-injected mice showed aberrations in the 
neuronal network affecting depressive mechanisms [15]. These reports 
suggest that Cav2.2 channel dysfunction and subsequent changes 
in dopamine and serotonin release are at least partly responsible for 
changes in depressive behavior. However, the role of Cav2.2 channels 
in the neural circuits underlying anxiety has not been examined. In 
the present study, we investigated the relationship between Cav2.2-
mediated signaling and anxious behaviors in mice that received i.c.v. 
injection of ω-conotoxin GVIA using the elevated plus maze, light-
dark exploration, and marble burying behavioral tests. 

In the elevated plus maze test, ω-conotoxin GVIA-injected mice 
spent significantly less time in the open arms compared with vehicle-
injected mice. In addition, a higher degree of anxiety was apparent in 
ω-conotoxin GVIA-injected mice in both the light-dark exploration 
and marble burying tests. Our results imply that ω-conotoxin GVIA-
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Figure 2. Light-dark exploration. Vehicle-injected or ω-conotoxin GVIA-injected mice 
were placed in the dark box for a 10-min period. The number of transitions between boxes 
was measured (A). The time spent in the light compartment is expressed as a percentage 
of the total time in the light and dark compartments (B). The data are presented as means ± 
SEM. *P<0.05 compared with the appropriate control. 
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 Figure 3. Marble burying behavioral test. Vehicle-injected or ω-conotoxin GVIA-injected 
mice were placed in the apparatus, and marble-burying behavior was measured over a 
20-min period. The number of marbles buried was counted (A). The duration of marble-
burying behavior is shown (B). The data are presented as means ± SEM. *P<0.05 compared 
with the appropriate control. 
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injected mice show increased anxiety levels, and that abnormalities 
in Cav2.2-mediated neuronal circuits contribute to the basic 
pathophysiological mechanisms underlying anxious behaviors. 
To further examine how Cav2.2 channel-dependent signaling 
influences anxiety-related behaviors, electrophysiological studies and 
neurotransmitter release analyses will be required.

Cav2.2 channel knockout mice exhibited normal activity during 
the light phase and became more active during the dark phase [25]. 
In our previous study, open field test analyses revealed no significant 
differences in motor activity between vehicle-injected and ω-conotoxin 
GVIA-injected mice [15]. In the present study, the total number of arm 
entries did not differ significantly between ω-conotoxin GVIA- and 
vehicle-injected mice in the elevated plus maze test. In the light-dark 
exploration test, the number of transitions between the light and dark 
boxes did not differ significantly between the two groups of mice. 
These results indicate that Cav2.2 channel-dependent signaling has no 
influence on spontaneous activity, at least during the light phase. 

In the present study, we showed that the inhibition of Cav2.2-
mediated signaling by the specific Cav2.2 blocker ω-conotoxin GVIA 
induced anxiety-related behavioral deficits in mice in the elevated plus 
maze, light-dark exploration, and marble burying behavioral tests. 
Previous findings indicated the presence of significant relationships 
between Cav2.2-mediated signaling and the dopaminergic and 
serotonergic systems [14] and between Cav2.2-mediated signaling 
and the expression of depression-related behavior [15]. These findings 
suggest that inhibition of Cav2.2-mediated signaling induces 
emotional changes due to alterations in the neuronal circuit system 
associated with Cav2.2 dysfunctions. 
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