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The canonical Wnt signal paradoxically regulates 
osteoarthritis development through the endochondral 
ossification process
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Osteoarthritis, a joint disorder characterized by cartilage 
degradation and osteophyte formation, is considered a major public 
health issue causing chronic disability worldwide with the increasing 
number of aging people today [1,2]. Although the social impact of 
this disorder has been compared to osteoporosis, [3] osteoarthritis 
is far behind osteoporosis in the development of disease-modifying 
treatments. This is mainly because little is known about the underlying 
molecular mechanism which can be the therapeutic target. Recent 
animal studies have disclosed that osteoarthritis is initiated by 
production of proteinases such as matrix metalloproteinases (MMPs) 
and aggrecanases that sever type II collagen (COL2) and proteoglycan, 
the principal matrix of articular cartilage [4-6]. However, trials applying 
the proteinase inhibitors for clinical use as a disease-modifying 
treatment have to date been unsuccessful due to insufficient efficiency 
and severe adverse events, [7,8] turning the interest of researchers to the 
upstream signals of the proteinases in chondrocytes. Cartilage matrix 
proteins, especially undegraded COL2, are shown to induce proteinases 
through a receptor tyrosine kinase discoidin domain receptor 2 (DDR-
2) [9-11]. This causes the degradation of the matrix proteins, and the 
product fragments then induce proteinases through integrins α2β1 
and α5β1 [9]. Another possible signal is pro-inflammatory factors like 
prostaglandins, tumor necrosis factor-α (TNF-α), interleukin-1 (IL-
1), IL-6, and nitric oxides that are produced mainly by synovial cells, 
similarly to rheumatoid arthritis [12]; however, accumulating evidence 
using experimental osteoarthritis models in knockout mice has not 
supported that these factors play a central role in the pathogenesis 
of osteoarthritis [13,14].Our previous study also showed that levels 
of TNF-α, IL-1 and IL-6 in the synovial fluid from knee joints of 
osteoarthritis patients were much lower than those from patients with 
rheumatoid arthritis [15].

Endochondral ossification including chondrocyte maturation and 
apoptosis is an essential process for skeletal development and growth 
at the embryonic cartilage and growth plate cartilage, respectively, but 
should not occur under physiological conditions in the joint cartilage 
which is a permanent cartilage and is not destined to be replaced 
by bone. Recently, chondrocyte maturation has been implicated to 
be deeply involved in the pathogenesis of osteoarthritis. In articular 
cartilage of osteoarthritis patients, pathologic expression of type X 
collagen (COL10) and other differentiation markers, including annexin 
VI, alkaline phosphatase, osteopontin, and osteocalcin, have been 
reported, [16-20] indicating that the osteoarthritis articular cartilage 
cannot maintain the characteristics of the permanent cartilage, 
but adds those of the embryonic or growth plate cartilage. A mouse 
genetic study found the induction of Runx2, an essential transcription 

factor for chondrocyte hypertrophy, [21,22] in articular chondrocytes 
during osteoarthritis progression under mechanical stress, which 
led to cartilage degradation and osteophyte formation through the 
chondrocyte maturation and MMP production [23,24]. Carminerin, an 
inducer of chondrocyte calcification, [25] is also reported to contribute 
to osteophyte formation during the osteoarthritis progression by studies 
on the deficient mice [26]. In addition to chondrocyte maturation, 
chondrocyte apoptosis has also recently been reported to be involved 
in osteoarthritis development [27]. Intraarticular injection of a pan-
caspase inhibitor suppresses cartilage degradation under osteoarthritis 
induction in rabbits [28]. Osteoprotegerin (OPG) is also suggested to 
prevent osteoarthritis progression through functional inhibition of its 
ligand TNF-related apoptosis-inducing ligand (TRAIL) [29]. 

The canonical Wnt-β-catenin signal, a potent regulator of skeletal 
development and homeostasis of adult bone mass, [30] is also known 
to induce chondrocyte maturation. During skeletal development and 
growth, activation of the Wnt-β-catenin signal in chondrocytes in 
limb buds or growth plates stimulates hypertrophy, calcification, and 
expressions of MMP and vascular endothelial growth factor [31-33]. 
The inhibition of Dickkopf-1 (Dkk1), a negative regulator of the Wnt-
β-catenin signal, has been reported to allow conversion of a mouse 
model of rheumatoid arthritis to osteoarthritis, indicating a regulation 
of joint remodeling [34]. Furthermore, recent human genomic studies 
have demonstrated that polymorphisms in the FrzB gene encoding the 
secreted frizzled-related protein 3 (sFRP3), an extracellular inhibitor of 
the Wnt-β-catenin signal, is associated with an increased susceptibility 
to osteoarthritis [35-37]. The polymorphisms were at least partly 
associated with a reduced ability to limit β-catenin signaling. Increased 
levels of β-catenin have been reported in chondrocytes within areas of 
degenerative cartilage [38,39]. These suggest a possible involvement of 
β-catenin in the pathogenesis of osteoarthritis [40,41]. 

Zhu et al. for the first time provide direct evidence of the role of 
β-catenin in the development of osteoarthritis [42]. They created 
mutant mice using an elegant breeding scheme by crossing mice 
floxed for exon 3 of β-catenin with cartilage specific and tamoxifen 
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regulated Cre mice to produce mice with a stabilized β-catenin 
protein resistant to phosphorylation by GSK-3β. The conditional 
activation of β-catenin in articular chondrocytes of adult mice caused 
osteoarthritis-like cartilage degradation and osteophyte formation, 
and this was associated with accelerated chondrocyte maturation and 
MMP expressions. Interestingly, the authors recently reported that 
selective suppression of β-catenin signaling in articular chondrocytes 
also causes osteoarthritis-like cartilage degradation in Col2a1-ICAT 
(inhibitor of β-catenin and T cell factor) transgenic mice, and this was 
mediated by enhancement of apoptosis of the chondrocytes [43]. These 
seem somewhat contradictory since both gain- and loss-of-functions 
of β-catenin in articular cartilage exhibited a similar osteoarthritis-
like phenotype, although the underlying mechanisms were different. 
Under physiological conditions, β-catenin may maintain the moderate 
maturation of articular chondrocytes, which is consistent with the 
role in skeletal development and growth, and prevent apoptosis. 
Both excessive and insufficient β-catenin levels may therefore impair 
the homeostasis of articular chondrocytes by enhancing pathological 
maturation and apoptosis, respectively, both of which are endochondral 
ossification processes. 

The figure summarizes the hypothesis of the mechanism whereby 
β-catenin regulates osteoarthritis development. β-catenin induces 
chondrocyte maturation similarly to Runx2, whereas it suppresses 
chondrocyte apoptosis similarly to OPG. The proteinases produced 
during the endochondral ossification process cause cartilage 
degradation at the center of the joint and osteophyte formation at the 
periphery. The difference of the two sites may depend on the vascularity. 
At the periphery, vascularity is accessible from the synovium or tendon, 
which completes endochondroal ossification and forms osteophytes, 
just as it does at the embryonic and growth plate cartilage. However, 
in the center, the vascularity is not accessible from the edge, so that it 
may end up with cartilage degradation without being replaced by bone. 

As described by the authors, the Wnt-β-catenin signal and 
the related molecules may regulate the osteoarthritis development 
through an endochondral ossification process including chondrocyte 

maturation and apoptosis. Although further human genomic and 
clinical studies are needed to elucidate the influence of the molecules 
on the pathogenesis of osteoarthritis, they might become therapeutic 
targets altering the course of this disabling disease. In addition, since 
serum levels of sFRP-3 and Dkk1, secreted antagonists of the Wnt-β-
catenin signal, are known to be associated with the radiographic joint 
space narrowing, [44] the molecules might be surrogate markers for 
cartilage loss during osteoarthritis progression. 
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Figure 1: Possible mechanism underlying the regulation of cartilage degradation and 
osteophyte formation by β-catenin. β-catenin induces chondrocyte maturation and 
suppresses chondrocyte apoptosis. Hence, the gain- and loss-of-functions of β-catenin 
cause chondrocyte maturation and apoptosis, both of which are essential processes for 
endochondral ossification. The produced proteinases cause cartilage degradation at the 
center of the articular cartilage, where endochondral ossification remains incomplete due 
to insufficient vascular supply from the edge. Meanwhile, at the periphery of the articular 
cartilage, vascularity is accessible from synovium or tendon, so that endochondroal 
ossification is completed and osteophytes are formed. 
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