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Abstract
The proper balance between the production of osteoclastogenic and anti-osteoclastogenic interleukins by immune and bone cells is critical for the preservation of bone 
homeostasis and the maintenance of optimal bone mass. This article summarizes the mechanisms whereby interleukins with osteoclastogenic properties (interleukin-
1β, interleukin 17A, interferon-γ, and tumor necrosis factor-α) and anti-osteoclastogenic properties (interleukin-1 receptor antagonist, interleukin 4, interleukin-6, 
interleukin-10, interleukin 13, and transforming factor-β) effect the activities of osteoblasts, osteoclasts and osteocytes. It points out that long term moderate intensity 
aerobic exercise training can provide a cost-effective means for achieving a proper balance between immune cells producing osteoclastogenic and anti-osteoclastogenic 
interleukins. 

Introduction
Interest in cytokines as regulators of bone metabolism began with 

the experiments of Horton and associates who, in 1972, found that 
conditioned medium from phytohemagglutinin (PHA)-stimulated 
peripheral blood mononuclear cells contained bone resorbing 
(osteoclastogenic) activity [1]. This activity was eventually found to be 
due to interleukin (IL)-1 and tumour necrosis factor (TNF)-α [2,3], 
prompting a series of studies examining the role of these and other pro-
inflammatory cytokines as mediators of bone resorption in periodontal 
disease, rheumatoid arthritis, osteolytic malignancies, and osteoporosis 
[4-9]. In addition to IL-1 and TNF-α, the spectrum of cytokines with 
osteoclastogenic effects has expanded to include IL-17A [10]. In blood, 
these cytokines are variably produced by T helper type 1 (Th1) cells, 
natural killer (NK) cells, Th1-derived CD8+ T cells, Th17 cells, and M1-
polarized macrophages [11,12]. 

Subsequent studies have identified several interleukins whose 
activities inhibit bone resorption and/or promote bone formation (anti-
osteoclastogenic cytokines). These include IL-1 receptor antagonist 
(IL-1Ra), IL- 4, IL-10, IL-13 and transforming growth factor (TGF)-β 
[10,13]. In blood, these cytokines are variably produced by Th2 cells, 
T and B regulatory cells, T follicular helper (TFH) cells, M2-polarized 
macrophages, and T2-derived CD8+ T cells [10-13]. 

There are several pleiotropic cytokines, interferon (IFN)-λ and IL-
6, whose effects on bone varies depending on experimental conditions; 
however, in most circumstances IL-6 is anti-osteoclastogenic whereas 
IFN- λ is osteoclastogenic [14]. In blood, IFN-λ is produced by Th1 cells 
and M1-polarized macrophages, whereas IL-6 is produced primarily by 
macrophages [10-13]. 

Immune cells occupying the microenvironment of bone are ideally 
situated to influence the ontogeny and functioning of cells responsible 
for bone formation (osteoblasts), bone resorption (osteoclasts) and the 
transduction of bone loading signals (osteocytes) [14].Osteoblasts and 
osteoclasts are derived from bone marrow stromal mononuclear cells, 
and retain the capacity to produce several cytokines, particularly IL-6 
and TGF-β. Osteocytes are derived from osteoblasts as they age and 
become imbedded in the lacuno-canalicular network of bone [15]. 

Mechanism of action 
Osteoclastogenic interleukins IL-1α and TNF-α promote 

osteoclastogenesis by inducing osteoblasts to express receptor activator 
of nuclear factor kappa B (NFKB) ligand (RANKL) and bind to RANKL 
receptors (RANK) on stromal osteoclast precursors, or produce soluble 
RANKL to perform the same function [5,8]. TNF-α potently activates 
osteoclasts through a direct action independent of and strongly 
synergistic with RANKL [16]; it also inhibits bone formation in vitro 
[17]. IL-1α and TNF-α exert potent anti-apoptotic effects on osteoclasts 
[10], and interact synergistically with one another [18] and with PTH 
[19] to enhance their bone resorptive capacities. 

IL-17A induces RANKL expression in osteoblasts, promoting 
the differentiation of osteoclasts from their stromal mononuclear cell 
precursors. This cytokine has the capacity to activate macrophages 
to secrete IL-1β and TNF-α, thereby indirectly upregulating 
osteoclastogenesis. In rodents, neutralization of IL-17A with 
polyclonal anti-17A antibody has been shown to downregulate bone 
erosion, RANKL expression, and the number of RANKL positive cells 
in inflamed joints [10]. 

IFN-λ effects on bone metabolism varies depending on 
experimental conditions [20]. It inhibits RANKL- induced 
osteoclastogenesis by degrading the RANK adapter protein TRAF6 
(tumor necrosis factor receptor-associated factor 6), a mechanism 
felt to protect against excessive. T cell-mediated bone resorption [21]. 
Recombinant IFN-λ has also been shown to preferentially inhibit 
IL-1 and TNF-stimulated bone resorption in vitro [22], and to be 
osteoprotective when administered to ovariectomized mice [23]. In 
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its effects on bone metabolism are predominantly osteogenic and 
anti-resorptive. IL-6 enhances bone formation by promoting the 
differentiation of osteoblast precursors [43,44] and by protecting 
osteoblasts against apoptosis [5,45]; it can inhibit bone resorption 
directly by downregulating RANKL signaling pathways in osteoclasts 
[46] and indirectly by suppressing the production of TNF-α and 
IL-1 and stimulating the production of IL-4, IL-10 and IL-1Ra by 
immune cells [47]. It is also an essential growth factor for B cells, the 
primary source of OPG in bone marrow stroma [48], and can induce 
IL-2 production in T cells [49]. IL-6 is produced in osteoblasts and 
osteocytes in response to bone loading signals, and, like TGF-β, plays 
an important role in bone remodelling [50,51]. 

Effect of exercise 
In a clinical study involving 43 adult subjects, we found that 6 

months of moderate intensity exercise decreased the spontaneous and 
PHA-induced production of osteoclastogenic cytokines (IL-1, TNF-α, 
and IFN-γ) in cultured peripheral blood mononuclear cells (PBMCs) 
by 24% and 59%, respectively. In contrast, the exercise training 
program increased the spontaneous and PHA-induced production 
of anti-osteoclastogenic cytokines (IL-4, IL-6, IL-10, and TGF-β) 
by 89% and 50%, respectively. This change was accompanied by a 
16% reduction in plasma levels of C-terminal telopeptides of Type I 
collagen, a reliable marker of bone resorption, and an 9.8% increase in 
plasma levels of osteocalcin, a reliable marker of bone formation. The 
reduction in bone resorption was proportionate to the time subjects 
spent in each training session doing aerobic exercises (75 minutes on 
average) [14]. Thus, one of the mechanisms whereby sustained exercise 
training enhances bone health is by favourably changing the balance 
between PBMCs producing osteoclastogenic and anti-osteoclastogenic 
cytokines. The mechanism(s) responsible for these changes is currently 
under investigation. 

Conclusion 
The proper balance between the production of osteoclastogenic 

and anti-osteoclastogenic interleukins by immune and bone cells is 
critical for the preservation of bone homeostasis and the maintenance 
of optimal bone mass. Long term moderate intensity aerobic exercise 
training provides a cost-effective means for achieving this balance.
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