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Abstract
Over the last years, considerable progress has been made in understanding the role of the endocannabinoid system in the modulation of several progressive 
neurodegenerative diseases. The endocannabinoid system, comprised of cannabinoid receptors (type-1 and type-2), their endogenous ligands [referred to as 
endocannabinoids, of which anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are most studied] and proteins responsible for their metabolism, is involved 
in several physiological processes. Endocannabinoids modulate neuronal, glial and endothelial cell function and exert neuromodulatory, anti-excitotoxic, anti-
inflammatory and vasodilatory effects. They have been found to exert neuroprotection in several conditions, such as cerebral ischemia, brain injury, neuroinflammation 
and excitotoxicity linked to seizure activity and associated neurodegeneration.

The endocannabinoid system and its pharmacological modulation is a promising field for the therapeutic intervention at a wide spectrum of diseases such as 
Parkinson’s disease, Alzheimer’s disease, Huntington’s chorea, multiple sclerosis, amyotrophic lateral sclerosis and epilepsy. The purpose of this review is to present 
the available research and clinical data, up to date, regarding therapeutic perspectives of the endocannabinoid system in such neurodegenerative diseases.
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Introduction
The endocannabinoid system (ECS) is involved in a variety 

of physiological processes including nociception, appetite, lipid 
metabolism, gastrointestinal motility, cardiovascular modulation, 
pain-sensation, motor activity, mood and memory [1-11].

Recently, a large number of researches have focused on the possible 
implications of the ECS on pain modulation, neuroprotection and 
antitumor actions [12-14]. Cannabinoids and endocannabinoids are 
promising candidates for the therapeutic armamentarium towards 
various neurodegenerative diseases such as Parkinson’s disease, 
Alzheimer’s disease, Huntington’s chorea, amyotrophic lateral sclerosis 
and multiple sclerosis (Figure 1).

The endocannabinoid system 
The ECS is comprised of two known G-protein coupled receptors, 

cannabinoid receptor type-1 (CB1R)  and type-2 (CB2R), their 
endogenous lipid-based ligands (the endocannabinoids-eCBS) 
of which anandamide (N-arachidonoylethanolamine, AEA) and 
2-arachidonoylglycerol (2-AG) are best defined [15-19] and the 
proteins that are responsible for their biosynthesis, transport and 
degradation [20].  

Cannabinoid receptors are seven-transmembrane, G-protein-
coupled receptors, which are negatively coupled to adenylyl cyclase 
[21-24].

CB1 receptors are one of the most abundant G-protein-coupled 
receptors in the mammalian brain, but they are also expressed in 
peripheral tissues (including myocardium, human coronary artery 
endothelial and smooth muscle cells, adipose tissue and various cell 
types of the liver) [25-29]. CB1R are highly expressed in regions of the 
brain, such as the cortex, limbic system, hippocampus, cerebellum, 

brainstem and several nuclei in the basal ganglia (associated with 
emotion, cognition, memory, motor and executive function) [5]. More 
specifically, they are expressed in brain areas involved in nociceptive 
transmission and processing including the periaqueductal gray (PAG), 
anterior cingulate cortex (ACC) and thalamus in addition to the dorsal 
horn of the spinal cord and dorsal root ganglion [30-34]. CB1R are 
found primarily at the terminals (but also at the axons, cell bodies 
and dendrites) of central and peripheral neurons, where they typically 
mediate the inhibition of amino acid and monoamine neurotransmitter 
release, as occurs with the inhibitory neurotransmitter gamma-
aminobutyric acid (GABA) [35-39].  

CB2 receptors in the brain, are expressed primarily in 
perivascular microglial cells [40,41] and astrocytes [42,43], where 
they modulate immune responses [44-46]. They are also expressed in 
cerebromicrovascular endothelial cells [47] and in central (brainstem) 
and peripheral neurons [48-50]. Furthermore, CB2R are found on 
the cells of the immune system throughout the whole body, including 
thymus, spleen, tonsils, lymph nodes and blood mononuclear cells. B 
lymphocytes, macrophages, monocytes, natural killer (NK) cells and 
polymorphonuclear cells express CB2, with B lymphocytes and T 
lymphocytes expressing the most and least amounts of CB2, respectively 
[51,52]. CB2R are also expressed  in the myocardium, human coronary 
endothelial and smooth muscle cells and the liver [27-29].
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Endocannabinoids (eCBs) are endogenous metabolites of 
eicosanoid fatty acids. They are lipid signalling mediators of 
the same cannabinoid receptors that mediate the effects of Δ9-
tetrahydrocannabinol (Δ9-THC), the primary psychoactive ingredient 
of marijuana [5,7,53-55]. They are derivatives of arachidonic acid 
conjugated with either ethanolamine or glycerol. Apart from AEA 
(N-arachidonoylethanolamine) and 2-AG (2-arachidonoylglycerol), 
which have been most studied, endocannabinoids also include 
N-arachidonoyldopamine (NADA), 2-arachidonoylglyceryl ether (2-
AGE, noladin ether) and O-arachidonoylethanolamine  (virodhamine) 
[15,56-60].  

Neurodegenerative diseases
Physiological stimuli and pathological conditions lead to 

differential increases in brain eCBs that regulate distinct biological 
functions. Physiological stimuli lead to rapid and transient (seconds 
to minutes) increases in eCBs that activate neuronal CB1 receptors, 
modulate ion channels and inhibit neurotransmission [61], whereas 
pathological conditions lead to much slower and sustained (hours to 
days) increases in eCB tone that change gene expression, implementing 
molecular mechanisms that prevent the production and diffusion of 
harmful mediators [25,62-67].

Endocannabinoids, primarily by binding to cannabinoid receptors, 
modulate neuronal, glial and endothelial cell function and exert 
neuromodulatory, anti-excitotoxic [25,68], anti-inflammatory [69-72] 
and vasodilatory effects (cannabinoids increase the diameter of cerebral 
arterioles and cerebral arteries in a CB1 receptor-dependent fashion, 
indicating that the main cerebrovascular effect of cannabinoids is 
vasodilation) [64,73]. 

Endocannabinoids have been demonstrated to exert neuroprotection 
against ischemia, traumatic brain injury and inflammation-induced 
neuronal damage and also against β-amyloid-, N-methyl-d-aspartate 
(NMDA)-,  and kainic acid-induced neurotoxicity [25,63,74-78]. 

ECS and neuroinflammation
Neuroinflammation is a biological immune response to various 

endogenous and exogenous stimuli in the nervous system and localized 
inflammatory responses in the brain parenchyma have been associated 
with the pathogenesis and progression of numerous neurological 
disorders and neurodegenerative diseases, including infection, 
ischemia, multiple sclerosis, Alzheimer’s disease and Parkinson’s 
disease [79-85]. At such lesion sites, activated microglia release 
several types of inflammatory mediators, such as toxic cytokines and 
oxygen radicals that contribute towards the impairment of the blood-
brain barrier (BBB) function  and subsequently result in secondary 
neuronal damage [76,86]. Among these mediators, prostaglandin E2 
(PGE2) is of major importance for the initiation, propagation and 
modulation of brain inflammation. AEA increases PGE2 and PGD2 
production in activated glial cells [87]. Although the primary causes 
of neurodegenerative diseases are varied, microglia activation and 
the subsequent release of pro-inflammatory cytokines, radical oxygen 
species and prostaglandins play a role of paramount importance 
in cerebral damage [87]. In experimental studies, submicromolar 
concentrations of AEA protected cells exposed to hypoxia and glucose 
deprivation [88]. In contrast, higher concentrations of AEA may 
induce neuronal toxicity in vitro and in vivo [89,90], possibly through 
enhancing PGE2 and free radical formation by activated astrocytes and 
microglial cells, thus leading to oxidative stress [91-93]. On the other 
hand, NADA (N-arachidonoyldopamine) inhibits both AEA-induced 

PGE2 and 8-iso-PGF2a formation in glial cells [87]. Therefore, in some 
studies AEA and NADA presented opposite effects in glial cells [87].

CB2 receptor blockade has been found to inhibit splenocyte 
proliferation and induce apoptosis in vitro [94]. CB2R also regulate 
B and T cell differentiation, and the balance of T helper 1 (Th1) pro-
inflammatory to T helper 2 (Th2) anti-inflammatory cytokines [95]. In 
macrophages, CB2 stimulation suppresses proliferation and the release 
of pro-inflammatory factors such as NO, IL-12, and TNF-a, inhibits 
phagocytosis, and reduces IL-2 signalling to Tcells [96]. CB2 activation 
also suppresses neutrophil migration and differentiation, but induces 
natural killer cell migration [97].

2-AG, apart from traumatic brain injury, has also been shown to 
protect neurons from insults such as excitotoxicity and ischemia both 
in vitro and in vivo [63,98-100]. Microglial cells that become activated 
during pathologies like excitotoxicity and ischemia are targeted by 
2-AG which modulates their migration and proliferation and also 
inhibits the production and release of proinflammatory cytokines 
(including TNF-α) and the expression of COX-2 [70,71,101-103]. Few 
studies, however, imply that under certain conditions 2-AG may act as 
a proinflammatory substance [104-106]. Particularly, COX-2 oxidative 
metabolites of the endocannabinoids may induce neurotoxicity by 
enhancing excitatory glutamatergic synaptic transmission, thus 
contributing to the inflammation-induced neurodegeneration 
[107-109]. COX-2-mediated neuronal injury/degeneration is likely 
attributed to the increased production of AA (arachidonic acid)-derived 
prostaglandins, mainly prostaglandin E2 (PGE2) [110-115]. While 
PGE2 is believed to promote neuronal injury in neuroinflammation, 
it may also protect neurons from glutamate-induced excitotoxicity 
and inflammation- or ischemia-induced neurodegeneration [116-119]. 
These contradictory observations suggest that there may be another 
pathway involved in the COX-2-mediated neurodegenerative process. 
The PGE2-G-induced actions are not mediated via a cannabinoid 
receptor 1 (CB1R), but mediated via extracellular signal-regulated 
kinase (ERK), p38 mitogen-activated protein kinase (MAPK), inositol 
1,4,5-trisphosphate (IP3), and nuclear factor-κB (NF-κB) signal 
transduction pathways. 2-AG decreases, while PGE2-G increases the 
frequency of mEPSCs (miniature excitatory post-synaptic currents) 
[109]. PGE2-G induces neurotoxicity, through the phosphorylation 
of MAPK and NF-κB. Glutamate receptor antagonists block PGE2-
G-induced neurotoxicity. Inhibition of COX-2 prevents ischemia 
or NMDA-induced cell death [120,121]. Elevated neurotoxic PG-
Gs and reduced neuroprotective 2-AG are an important mechanism 
contributing to the COX-2-mediated neurodegeneration during 
neuroinflammation [109]. 

2-AG also acts on microglial CB2 receptors and increases their 
proliferation [40]. Experiments with CB1 and CB2 receptor-deficient 
mice have revealed the existence of further, not yet cloned but 
pharmacologically and functionally well characterized CB receptors 
[122]. The abnormal-cannabidiol (abnCBD)-sensitive receptor is one 
of these pharmacologically identified non-CB1/non-CB2 receptors and 
has been first described on endothelial cells of rat mesenteric blood 
vessels [123]. This receptor is activated by the endocannabinoid AEA 
and the synthetic agonist abn-CBD ((2)-4-(3-3,4-trans-p-menthadien-
1,8)-yl-olivetol), a derivative of the phytocannabinoid CBD. Abn-
CBD-sensitive receptor-mediated effects have also been described for 
microglial cells: the endocannabinoid 2-AG triggers the migration 
of microglial cells via activation of the abn-CBD-sensitive receptor 
[70,71,124]. Moreover, 2-AG attenuates the LPS (lipopolysaccharide)-
induced release of proinflammatory cytokines like TNF-alpha from 
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microglial cells independently from CB1 and CB2 receptors [101,125]. 

ECS and Parkinson’s disease
Parkinson’s disease (PD) is a chronic, progressive 

neurodegenerative movement disorder. In PD, dopamine production 
in the basal ganglia is altered. Dopamine is the neurotransmitter that 
stimulates motor neurons, the nerve cells that control movement. PD 
results from the degeneration of dopamine-producing neurons in 
the brain, specifically in the substantia nigra and the locus coeruleus. 
When dopamine production is depleted, the motor system nerves are 
unable to control movement and coordination. Characteristic primary 
symptoms of PD are tremor, rigidity, slow movement (bradykinesia) 
and difficulty walking. Oxidative damage of dopaminergic neurons has 
been postulated as a mechanism of neuronal degeneration.

Evidence suggests that cannabinoids may prove useful in 
Parkinson’s disease by inhibiting the excitotoxic neurotransmitter 
glutamate and counteracting oxidative damage to dopaminergic 
neurons. The inhibitory effect of cannabinoids on reactive oxygen 
species, glutamate and tumor necrosis factor suggests that they may 
be potent neuroprotective agents [126,127]. The endocannabinoid 
system, therefore, might play some physiological role in the control of 
movement by the basal ganglia [128]. The globus pallidus and substantia 
nigra pars reticulata contain the highest density of CB1 receptors in the 
body. CB1 receptors are also abundant in the putamen, part of the relay 
system within the basal ganglia that regulates body movements, and 
in the cerebellum, which coordinates body movements. Cannabinoid 
receptors are also found in the neurons that project from the striatum 
and subthalamic nucleus, which inhibit and stimulate movement, 
respectively. They are, therefore, possible additional sites that might 
underlie the effects of cannabinoids on movement. This is supported 
by the finding that CB1 knockout mice exhibit lower locomotor activity 
[129]. Furthermore, the concentration of anandamide in the globus 
pallidus and substantia nigra is three times higher than in other brain 
regions. Cannabinoids decrease both the inhibitory and stimulatory 
inputs to the substantia nigra, and therefore might provide dual 
regulation of movement at this nucleus, producing an upregulation 
of CB1 receptors. The antidyskinetic function of cannabinoid agonists 
may be exerted through inhibition of GABA reuptake in the lateral 
part of the globus pallidus. On the other hand, treatment with CB1 
receptor antagonists may also be used to control akinesia in PD [130]. 
In an early clinical report, however, no effects of smoked cannabis were 
observed in parkinsonian tremor [131]. Preclinical research in animal 
models of several movement disorders have shown variable evidence 
for symptomatic benefits, but more consistently suggest potential 
neuroprotective effects in several animal models of PD [128].

ECS and Alzheimer’s disease
Alzheimer’s disease is not a motor disorder in nature, but, in 

addition to classic symptoms that affect cognition and memory, this 
disease also exhibits a variety of motor disturbances presumably due 
to the degeneration of cortical afferences to the basal ganglia circuitry. 
Studies with postmortem brain regions of patients affected by this 
disease have revealed a significant loss of CB1 receptors which seems 
notably circumscribed to the basal ganglia, in particular to the caudate 
nucleus, medial globus pallidus and substantia nigra. Brain regions 
other than the basal ganglia were less affected or did not exhibit any 
changes for the CB1 receptor, except for the hippocampus which also 
showed significant reductions [132]. However, these results might 
be more related to increasing age rather than to an effect selectively 

associated with the pathology characteristic of Alzheimer’s disease. 
Although still preliminary, recent reports suggest that modulation of 
the endocannabinoids system may constitute a novel approach for the 
treatment of Alzheimer’s disease [133]. 

ECS and Huntington’s disease
Huntington’s disease (Huntington’s chorea) is a fatal, 

neurodegenerative disorder characterized by a selective degeneration 
of striatal projection neurons, which deal with choreic movements. 
It is inherited via sex chromosomes (it is rare in women who may 
nevertheless carry the disease) and usually develops in middle-aged 
males. There is a gradual loss of mental and cognitive function, 
commonly associated with depression and progressive loss of voluntary 
motor control. It has been suggested that the neuronal degeneration 
caused by the disease results from an excess of free radical oxidation 
or glutamate. Excitotoxicity has been implicated in the etiology of 
Huntington’s disease, because intrastriatal injection of glutamate 
receptor agonists reproduces some of the neuropathological features of 
this disorder [134]. Furthermore, a selective loss (≈97%) of cannabinoid 
receptors and neurotransmitters alterations in specific regions of the 
brain, like the corpus striatum, substantia nigra and globus pallidus 
of Huntington’s patients has been demonstrated [135,136]. Therefore, 
endocannabinoids, through the inhibition of glutamate release and/
or the reduction of reactive oxygen species, could be a promising 
treatment of Huntington’s disease, since potential neuroprotective 
effects have been found in various animal models of Huntington’s 
disease [128,137]. 

ECS and multiple sclerosis
Multiple Sclerosis (MS) has been recognized as a neurodegenerative 

disease that is triggered by inflammatory attack of the CNS. When MS 
has been active for some years it can cause muscle stiffness and spasms, 
pain, fatigue, difficulty passing urine and tremors. CB1 receptors 
are involved in the pathophysiology of MS. The cannabinoid system 
has been found to be neuroprotective in an animal model of MS, the 
allergic encephalomyelitis (EAE) model [138]. Cannabinoid receptor 
agonists were able to reduce spasticity and tremor in a mouse model 
of EAE (chronic relapsing experimental allergic encephalomyelitis) 
[139,140]. In addition, several studies suggest that cannabinoids and 
endocannabinoids may have a key role in the pathogenesis and therapy 
of MS [133,141,142]. In EAE and, at least initially, in MS, axonal damage 
and demyelination occur at least concurrently with inflammation 
[143,144], which produces many potentially damaging elements 
such as cytokines and oxidative stress [145]. Indeed, eCBs can down-
regulate the production of T helper 1-associated pathogenic cytokines, 
enhancing the production of T helper 2-associated protective cytokines 
[146]. A shift towards T helper 2 has been associated with therapeutic 
benefit of cannabinoids in MS. Recently, a distinct immunomodulatory 
effect of AEA in dendritic cells from MS patients has been shown, 
which may pave the way for the design of new endocannabinoid-based 
immunotherapeutic agents targeting a specific cell subset [147]. 

ECS and amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a  motor neuron disease 

caused by the degeneration of neurons located in the ventral horn of 
the spinal cord and the cortical neurons that provide their afferent 
input. The disorder is characterized by rapidly progressive weakness, 
muscle atrophy and  fasciculations, spasticity, dysarthria, dysphagia 
and respiratory compromise. The cause of ALS is not yet known, but 
studies have shown that ALS  patients have increased free radicals 
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accumulation and increased levels of glutamate in the serum and spinal 
fluid. Therefore, decreasing the release of glutamate via activation of 
the endocannabinoid system, combined with its antioxidant properties, 
could be proven useful in the treatment of ALS [141,148].

ECS and epilepsy
In experimental models of epilepsy, levels of anandamide (but not 

2AG) in the hippocampus of mice after kainic acid-induced seizures 
were found to be transiently increased [25,149]. These studies revealed 
that seizures rapidly activate the endogenous cannabinoid system, 
which provides protection against excessive neuronal activity by 
reducing excitability of hippocampal pyramidal neurons and activating 
intracellular signalling cascades [150]. Exogenous cannabinoids, as 
well as endocannabinoids can limit seizures and neurodegeneration 
[151]. Endocannabinoids are mobilized by epileptiform activity and in 
turn influence this activity by inhibiting synaptic transmission in both 
excitatory and some inhibitory synapses [151]. 

Discussion
Over the last years, considerable progress has been made in 

understanding the role of endocannabinoids in preventing or reducing 
the effects of progressive neurodegenerative diseases. The ECS 
has been shown to mediate neuroprotection in many neurological 
and psychiatric disorders including pain, schizophrenia, anxiety, 
depression, Parkinson’s disease, Alzheimer’s disease, Huntington’s 
chorea, multiple sclerosis, amyotrophic lateral sclerosis and epilepsy 
[152-156]. It also has neurotrophic and neuroprotective effects in 
cerebral ischemia (stroke) and traumatic brain injury [157]. 

The endocannabinoid system represents a local messenger between 
the nervous and immune system and is obviously involved in the 
control of immune activation and neuroprotection. Manipulation of 
endocannabinoids and/or use of exogenous cannabinoids in vivo can 
constitute a potent treatment modality against inflammatory disorders. 
Cannabinoids have been tested in several experimental models of 
autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, 
colitis and hepatitis and have been shown to protect the host from 
the pathogenesis through induction of multiple anti-inflammatory 
pathways.

Recently, numerous researches have revealed several secrets of 
the ECS. Although, further information is still needed before ECS 
is completely comprehended, pharmacological modulation of the 
ECS seems, nowadays, a viable target which will pave the way for the 
therapeutic intervention at a wide spectrum of diseases. 
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