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Abstract
Disease-related injury in any organ triggers a complex cascade of cellular and molecular responses that culminates in tissue fibrosis. This monograph describes 
the molecular, cellular and immunological characteristics that occur in an inflammatory process, until it ends in fibrosis; and particularly when the phenomenon 
persists, leading to an activation that does not remit from the effector cells, chronifying the process, healing the tissue or the organ, generating specific pathologies 
and dysfunction. The article is illustrated with some examples of fibrotic diseases, discussing their pathogenesis, clinical picture and treatment, particularly in light 
of new immunopathogenic findings. The preponderant role of early therapeutic interventions to block the evolution towards tissue scar is highlighted. In the end, 
recommendations are made about the avenues of investigation that must be followed in this final stage of the inflammatory process.
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Introduction
Inflammation is a term credited to Celsus. It was used as a 

metaphor because the dermal response to injury was reminiscent of 
a fire, characterized by redness (rubor), heat (calor), swelling (tumor), 
and pain (dolor), and some of these Latin terms are used today in 
medical schools. Virchow described a fifth change, loss of function 
(functio laesa). A sixth change, repair, could also be added, because a 
new growth occurs after tissue injury, just like after the fire occurs in the 
forests, prairies and even cities in an attempt to preserve the function 
and life [1]. When injury and inflammatory responses are abrogated, 
resorption of extracellular matrix proteins occurs, promoting organ 
repair. When chronic injury persists, the unremitting activation of 
effector cells results in the continuous deposition of extracellular 
matrix, progressive scarring and organ damage [2].

Rockey and others have proposed 4 phases of the fibrogenic 
response. The first phase is the beginning of the response to the injury 
to the organ. The second phase is the activation of effector cells and 
the third is the elaboration of extracellular matrix proteins (ECM). 
The fourth phase is the deposit of these proteins in a dynamic model, 
in which, not only the deposit is increased, but the reabsorption of 
ECM is also reduced, promoting the progression to fibrosis and finally 
the failure of the organ [2]. The "wounding response" is activated by 
complex activities within different cells that generate specific molecules 
with programmed action pathways. The cellular component includes 
inflammatory cells (eg, polymorphonuclear cells, macrophages, T 
lymphocytes, etc.), epithelial and endothelial cells and fibrogenic 
effector cells that are the ones that will produce and release ECM 
proteins. These effector cells include fibroblasts, myofibroblasts, cells 
derived from bone marrow, fibrocytes, epithelial cells in transition to 
mesothelial cells (EMT), endothelial cells in transition to mesothelial 
cells (EndMT), and mesothelial cell in transition to mesenchymal cells 
(MMT). A number of molecules are critical to transmit and control 
information between the cells that suffer the initial injury and the 
effector cells that produce ECM. The deformity of the organ produces 
dysfunction, but it must be emphasized that this is a dynamic, active 
and ductile phenomenon, although the fibrogenic plasticity varies from 
organ to organ.

Pathogenesis
Both acute and chronic inflammation can develop fibrosis. 

Inflammation damages the epithelial and endothelial cells leading to 
the production and release of inflammatory mediators (cytokines, 
chemokines and others) that recruit a wide range of inflammatory 
cells (PMNs, eosinophils, basophils, mastocells, T lymphocytes and 
macrophages). These cells, in turn, release profibrotic mediators which 
activate effector cells that manage the fibrogenic process [3]. The 
molecular factors that direct and control the fibrotic process are broad 
and complex. One of these factors, which is practically present in almost 
all fibrotic processes, is the transforming growth factor beta (TGF-β). 
This factor involves the binding of a ligand to a serine-threonine kinase 
type II receptor that recruits and phosphorylates to type I receptor. This 
type I receptor then phosphorylates SMADs that modulate the gene 
expression of the genes that code for the activity of fibrogenic factors. 
SMAD is an acronym from the fusion of Caenorhabditis elegans 
Sma genes and the Drosophila Mad Mothers against decapentaplejic 
proteins to transducer signals. Actually TGF-β is a superfamily that 
involves multiple cascades of signals [4]. TGF-β is a potent stimulator 
of fibrogenic cells for the production of ECM proteins [5,6].

Other profibrotic factors that stimulate ECM production are: 
platelet-derived growth factor (PDGF), connective tissue growth factor 
(CTGF), vascular endothelial growth factor (VEGF), IL-1, IL-4, IL -6, 
IL-10, TNF-α. Also vasoactive peptides play an important role in the 
deposition process of ECM, such as angiotensin II and endothelin I 
[7]. This latter peptide has a role in fibrosis in practically all organs 
by acting on the receptor coupled to G protein of endothelin-A or 
on the cellular receptor of endothelin-B or both [8]. Integrins, which 
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bind extracellular matrix to cells, are also critical in the pathogenesis 
of fibrosis [9].

These factors will stimulate the effector cells to release ECM. 
The matrix proteins that form the fibrotic scar are mainly collagen 
I and III (synthesized from pro-collagen), cellular fibronectin, 
basement membrane proteins such as laminin, proteoglycans and 
aggrecan. Myofibroblasts express smooth muscle proteins, including 
actin (ACTA2), which is contractile. The contraction of these cells 
contributes to the distortion of the parenchymal architecture, but 
this remodeling confers a dynamism character to the tissue and 
may have important therapeutic implications [2]. The fibrogenic 
process therefore involves an interrelation between biosynthesis, 
deposition and ECM degradation. The synthesis is counterbalanced by 
degradation by matrix metalloproteinases (MMPs) (collagenases and 
gelatinases), whose activity in turn is controlled by tissue inhibitors of 
metalloproteinases (TIMPs). Collectively MMPs and TIMPs determine 
the general rate of ECM degradation [10,11]. In addition, the process is 
governed by the elimination of effector cells by senescence, apoptosis 
and autophagy.

The role of genetics in the pathogenesis of fibrosis goes "in 
crescendo". For example, in the kidney, fibrosis is a prominent change 
of karyomegalic interstitial nephritis, which is caused by mutation in 
the gene encoding Fanconi anemia-associated nuclease 1 (FANI) [12]. 
In the liver, PNLAP3 is important in ethanol-mediated fibrosis and 
associated with fatty liver disease and there are a number of candidate 
genes that may be important in hepatic fibrosis induced by infection 
with the hepatitis C virus [13-15]. Primary myelofibrosis (PMF) can 
be associated with mutations of the JAK2, CALR, MPL genes [16]. 
HCM (hypertrophic cardiomyopathy) is a relatively common genetic 
disorder of cardiac sarcomeres, characterized by left ventricular 
hypertrophy and represents the most common cause of sudden cardiac 
death among young athletes [17]. Mutations in TERT, TERC, PARN, 
RTL1, genes involved in the maintenance of telomere length, are 
associated with an increased risk of idiopathic pulmonary fibrosis (IPF) 
[18,19]. Variations in genes (DSP, AKAP13, CTNNA, and DPP9) that 
are responsible for cell adhesion, integrity, and mechanotransduction 
(the generation of electrical signals from mechanical stimuli) also 
confer a predisposition for IPF [20,21].

A single-nucleotide polymorphism (rs35705950) in the promoter 
region of MUC5B substantially increases the risk of IPF [22]. MUC5B 
codes for mucin 5B, a glycoprotein required for airway clearance and 
innate immune responses to bacteria [23]. The rs35705950 minor allele 
leads to overexpression of mucin 5B in small-airway epithelial cells, 
to universal finding in patients with IPF (regardless of the MUC5B 
genotype). Although the mechanism linking mucin 5B overexpression 
and IPF risk remains unknown, some researchers have hypothesized 
that aberrant mucociliary clearance may lead to alterations in the lung 
microbiome and innate immune responses that promote IPF [24-26].

The epigenetic regulation of gene expression, which includes but 
is not limited to DNA methylation, post-translational modifications of 
chromatin histones, and regulatory microRNAs (miRs), is important 
in fibrosis. The miRs play a role in expanding genetic regulation. In 
diabetic nephropathy, TGF-β promotes the expression of mi-R192, 
which results in collagen deposition [27], and miR-19b regulates TGF-β 
signals in hepatic stellate cells [28]. In the heart, miR-21, miR-29, miR-
30 and miR-133 participate in the remodeling of the myocardial matrix 
[29]. Fibroblasts from patients with IPF have global changes in DNA 
methylation, which are not found in normal lung fibroblasts [30].

Clinical examples
Fibrosis is a pathological change of disease in virtually all organs 

(Table 1). Here are some examples of fibrosis,

Cardiac fibrosis

Heart failure (HF) is a malignant and fatal disease. The incidence 
of heart failure is 1-2% in developed countries and increases to 10% in 
those over 70 years, with only 35% of survival to 5 years after diagnosis 
[31]. A key mechanism of HF is cardiac remodeling, which includes 2 
aspects: injury to cardiomyocytes and myocardial fibrosis. There are 
two types of myocardial fibrosis: fibrosis by replacement and interstitial 
fibrosis (reactive). Reactive fibrosis occurs in perivascular spaces and 
corresponds to a fibrogenic response similar to that of other tissues; 
fibrosis due to replacement occurs at the site of myocyte loss, as occurs 
in necrosis due to myocardial infarction. Both lead to ECM deposit.

The damaged myocardium releases DAMPs (danger-associated 
molecular patterns) that are molecules that activate macrophages, 
mastocells and lymphocytes at the site of injury. For example, one of 
these molecules (CCL-2 = C-C motif chemokine 2) recruits monocytes 
inducing their proliferation and mobilization of bone marrow into 
the inflammatory compartment as precursors of macrophages [32]. 
Macrophages (M1 and M2) release inflammatory mediators (which 
attract more cells amplifying inflammation) and profibrotic factors 
(TGF-β, PDGF, IL-10, angiotensin II, and endothelin I) that activate 
fibrogenic effector cells [33]. Inhibiting macrophage infiltration 
could prevent the development of fibrosis [34]. Mastocells release, 
in addition to the fibrogenic factors, tryptase and chymase. The 
latter, via angiotensin II, can activate the TGF-β / SMAD axis and 
promote fibrosis. Blocking TGF-β with antibodies could suppress the 
production of collagen induced by chymase [31]. Infiltration with T 
lymphocytes is associated with progression of HF. There are 4 subsets 
of T lymphocytes: T helper (Th1 and Th2), T regulatory (Treg) and 

Eye Strabismus

Skin
Scleroderma
Keloid
Nephrogenic systemic fibrosis

Pulmonary fibrosis
Restrictive lung disease
Pulmonary hypertension
Right-side heart failure

Cardiac fibrosis
Diastolic dysfunction
Heart failure
Arrhythmia

Renal fibrosis
Chronic kidney disease
Hypertension, anemia
Electrolytes disturbances

Cirrhosis

Portal hypertension
Ascites
Gastroesophageal varices
Hepatorenal syndrome
Hepatopulmonary syndrome
Portopulmonary syndrome
Hepatic encephalopathy
Hepatocellular cancer

Pancreatic fibrosis

Chronic pain
Diabetes mellitus
Malabsorption
Cancer

Table 1. Fibrogenesis and organ system. Selected organs and associated diseases are 
highlighted
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Th17. Th1 media collagen-cross-linking in left ventricle leading to 
diastolic dysfunction; Th2 releases IL-13 and IL-14 and Th17 produces 
IL-17, all of which promote the production of collagen. Treg attenuates 
myocardial fibrosis and is the main mechanism of protection from 
injury to cardiomyocytes.

Although proinflammatory cytokines, ROS, TGF-β, renin-
aldosterone-angiotensin regulate the process of myocardial fibrosis, 
recent studies describe some other emerging molecules involved in the 
fibrogenic process. Such is the case of cardiotrophine-1, nicotinamide 
adenine dinucleotide phosphate oxidase and several matricellular 
proteins that are involved in the activation of myofibroblasts and 
collagen cross-linking. These molecules are under intense investigation 
as diagnostic and therapeutic objectives [35,36].

TGF-β1 (one of the 3 isoforms of TGF-β) activates the conversion 
of fibroblasts (the most abundant cell in the myocardium) to 
myofibroblasts and activates the production of collagen, mainly I 
and III [37]. Cardiomyopathy associated with TGF-β1 is associated 
with valvular thickening, valvular dysfunction, systolic and diastolic 
dysfunction, and electrophysiological abnormalities and repolarization 
disorders. The collagen in the septa generates areas of arrhythmogenic 
fibrosis by inducing a slow discontinuation of the conduction and also 
an alteration of the reentry circuits due to spatial heterogeneity [38-41]. 
Fibrotic scar in heart correlates strongly with arrhythmias and sudden 
cardiac death.

Markers of myocardial fibrosis such as Galactin-3 and ST-2 (a 
member of the IL-1 receptor family) have produced dissimilar results 
[42]. miRNAs and pro-Collagen Type I (PICP) and Amino-Terminal 
Pro-Peptide of Pro-Collagen Type III (P III NP) are not very specific 
because they are not only associated with myocardial but also hepatic 
and pulmonary fibrosis.

Nuclear Magnetic Resonance (MR) with Gadolinium is a recent 
method of research and diagnosis. Last Gadolinium Enhancement 
(LGE) is defined excessively in the myocardium due to the lengthening 
of the extracellular space by the deposit of ECM. The patterns of 
LGE-MR could help identify the causes of heart failure, especially 
cardiomyopathies [43]. At the prognostic level, the amount of high-
scale threshold on CMR correlates positively with the possibility of 
adverse cardiovascular outcomes in patients with end C & D heart 
failure (adjusted hazard ratio 1.46 / 10% increase in LGE: p = 0.003) 
[44]. There is no "best threshold" that perfectly matches the extent of 
the fibrosis and the intensity of the LGE signal is not precise enough 
to differentiate the types of fibrosis (for example, the interstitial vs. 
the replacement). T1 "mapping" has a prominent advantage to detect 
diffuse fibrosis because it evaluates the relaxation time of myocardial 
tissue.

The ECV (extracellular volume fraction) evaluates myocardial 
fibrosis by measuring T1 mapping analysis pre- and post-contrast. 
Myocardial ECV is higher in patients with non-ischemic dilated 
cardiomyopathy than in normal individuals, and may identify early 
interstitial fibrosis. ECV can be an important method to assess 
mechanical and physiological abnormalities in patients with HCM, a 
relatively common genetic disorder of cardiac sarcomeres that presents 
with hypertrophy of the left ventricle and is the most frequent cause of 
sudden death among young athletes [45]. Although endomyocardial 
biopsy could be considered as the "gold standard" for detecting 
myocardial fibrosis, the ethical and moral regulations and the invasive 
nature do not allow apply it in a generalized way.

Hepatic fibrosis
Liver fibrosis is a frequent and potentially fatal complication 

of many chronic diseases that affect hepatocytes or biliary cells, and 
represents a high medical and economic burden. Although it is true 
that molecular knowledge of pathogenesis has advanced considerably 
at the experimental level, the transfer to the clinical part is limited and 
pharmacological treatment is generally effective only in experimental 
models [46]. The different etiological agents damage the hepatocytes, 
inducing an inflammatory response that involves the local vascular 
system and the immune system, causing the systemic mobilization 
of endocrine and neurological mediators. This response involves 
endothelial cells, stellate cells and resident immune cells (macrophages 
= Kupffer cells, dendritic cells and mastocells), which contain surface 
receptors that sense bacterial toxins (PAMPs) and molecules released 
from the injured tissue (DAMPs) by releasing a variety of different 
inflammatory and profibrotic mediators within the liver tissue. 
Numerous molecular pathways participate, as do those found in 
other organs, but a pathway that seems to be exclusive until this time 
of liver is the one that uses the toll-like receptor 4 (TLR4) [47]. TLR4 
is activated on the surface of the stellate cells by bacterial intestinal 
lipopolysaccharides derived from the intestine (translocated bacteria), 
activating fibrogenic effector cells, linking fibrosis and microbiome 
[48]. Although a variety of effector cells synthesize ECM, hepatic 
stellate cells appear to be the major source of ECM in the liver. There 
is sufficient evidence that these cells, similar to pericytes, undergo 
myofibroblastic transformation in response to injury.

Hepatic fibrosis can be caused by different etiologies including 
genetic disorders, chronic viral infection, excessive alcohol 
consumption, autoimmune attack, metabolic disorders, decreased bile 
flow, venous obstruction and parasitic infection [49]. But also excess 
lipids and other lipotoxic agents produce endoplasmic reticulum 
stress, impaired mitochondrial function and oxidative stress in 
parenchymal and non-parenchymal hepatic cells, and modifications 
in the microbiotic composition of the gastrointestinal tract or its 
integrity may be associated with nonalcoholic fatty liver disease and 
hepatic fibrosis [50]. The progression of liver disease can be triggered 
by the acidic bile composition. Bile acids are amphipathic molecules 
with manifold physiological functions. On the one hand, they facilitate 
the emulsification of dietary fats and assist the intestinal absorption of 
lipids and fat-soluble vitamins [51]. On the other hand, they act like 
hormones and are embedded in a complex signal cascades, The most 
important targets of bile acids are the farnesoid X receptor (FXR) and 
the G protein-coupled membrane receptor 5 (TGR5), which activate 
the expression of genes involved in the metabolism of bile acids, lipids 
and carbohydrates. Bile acids also have antimicrobial action [52].

The end result of hepatic fibrogenesis is cirrhosis, an ominous 
parenchymal lesion that underlies a wide range of devastating 
complications that have adverse effects on survival. Portal hypertension, 
a devastating result of injury, develops during the fibrogenic response 
after disruption of the normal interaction between sinusoidal 
endothelial cells and hepatic stellate cells; the resulting activation 
and contraction of pericytes-like stellate cells leads to sinusoidal 
constriction and increased intrahepatic resistance. This increase in 
resistance in turn activates abnormal signaling by smooth-muscle cells 
in mesenteric vessels. An increase in angiogenesis and collateral blood 
flow follows, resulting in an increase in mesenteric blood flow and a 
worsening of portal hypertension [50]. The major clinical sequelae of 
portal hypertension, variceal hemorrhage and ascites, emerge relatively 
late, after the portal pressure rises to a hepatic venous pressure gradient 
of more than 12 mm Hg [53].
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Renal fibrosis

Renal fibrosis is characterized by an excessive deposit of ECM 
in the interstitial compartment, leading to scar formation [54]. The 
kidneys are susceptible to hypertension and diabetes, the two leading 
causes of renal fibrosis. As in other organs, renal fibrosis is mediated by 
cellular elements and molecular elements, but among the factors that 
stimulate ECM in renal fibrosis, TGF-β1 is the main responsible. It is 
the most potent and ubiquitous profibrotic factor, which acts through 
intracellular signals such as protein-kinases and transcription factors, 
and is involved not only in ECM deposition, but also in hypertrophic 
renal proliferation and renal cell apoptosis. The renin-angiotensin-
aldosterone system is particularly important in renal fibrosis induced 
by hypertension [55]. Myofibroblasts are the major source of ECM: 
α-smooth muscle actin-positive myofibroblasts. A pathogenic pathway 
of renal fibrosis is the defects of the metabolism of fatty acids in tubular 
epithelial cells with accumulation of intracellular lipids [56]. Basically 
what exists is an enzymatic defect in the oxidation of fatty acids (FAO). 
TGF-β1, the most potent profibrotic cytokine, inhibits the expression 
of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme 
in FAO, and that decreases fatty acid metabolism. Accumulated 
fatty acids damage cells that generate signals for the proliferation of 
myofibroblasts and renal fibrogenesis [57].

Another pathogenic pathway is the program of transformation 
of epithelial cells to mesenchymal cells, which generates fibrogenesis 
(EMT). Therefore, inhibiting the EMT program and blocking or 
inducing (genetic or pharmacological ablation) a reduction in the 
population of myofibroblasts could in the future reduce the progression 
to fibrosis after injury [58,59]. Injury to any of the elements of renal 
cellular architecture (glomeruli, tubules, interstitium and capillaries) 
triggers the EMC deposit. The location determines the clinical 
consequence. The immune deposits are located in the glomeruli 
producing glomerulonephritis, while the injury of the tubulo-
interstitial environment (NSAIDs, infection, polycystic kidney disease, 
urinary obstruction) produces tubulo-interstitial fibrosis [60].

Glomerular fibrosis, regardless of the cause, diminishes renal 
blood flow, which leads to hypoxia and the activation of hypoxia-
inducible factor 1, which in turn triggers nephron collapse and fibrotic 
replacement by means of rarefaction [61]. Regardless of the initiating 
insult, renal fibrosis leads to loss of function and organ failure. 
Homeostasis can be maintained with a glomerular filtration rate as 
low as approximately 10% of the normal rate. As the mechanisms 
maintaining homeostasis are progressively disrupted, anemia develops 
and the regulation of electrolyte balance and pH is disrupted.

Pulmonary fibrosis 

 The family of interstitial lung diseases is characterized by cellular 
proliferation, interstitial inflammation, fibrosis, or a combination 
of such findings within the alveolar wall that is not due to infection 
or cancer [62]. Interstitial fibrosis is the predominant phenotype in 
most cases. The majority of patients with interstitial fibrosis ultimately 
receive a diagnosis of chronic hypersensitivity pneumonitis (due 
to mold or bird exposure), pulmonary sarcoidosis, an underlying 
autoimmune disease, drugs, environmental exposures (e.g., silica 
dust or asbestos), or if no cause is identified, an idiopathic interstitial 
pneumonia. The most common idiopathic interstitial pneumonia is 
idiopathic pulmonary fibrosis (IPF), a chronic, progressive, fibrotic 
interstitial lung disease of unknown cause, often with characteristic 
imaging and histologic appearances that occurs primarily in older 
adults [63]. The increased rate of hospitalizations and deaths suggests 

an increased burden of a disease that occurs worldwide. The incidence 
of IPF is higher in the USA and Europe (3-9 cases per 100,000 persons-
year) and the prevalence is 494 cases per 100,000 in adults over 65 years 
[64,65].

The chronic history of exercise dyspnea is practically universal in this 
entity, accompanied by chronic cough without purulence and fatigue. 
With the progression, bilateral Velcro-like crackles, clubbing and 
acrocyanosis appear. The three typical functional findings are reduced 
DLCO, hypoxemia at rest or desaturation with exertion, and a normal 
or low FVC. Conventional radiography shows nonspecific changes or 
bilateral basal reticular abnormalities. High resolution CT (supine, 
inspiratory and expiratory decubitus and with thin reconstruction 
[<1.25 mm]), in the absence of a specific cause of fibrosis, will identify 
the UIP pattern (usual interstitial fibrosis), diagnosis of IPF. Lung 
biopsy will be done only if the combination of clinical, functional and 
imaging data is not diagnostic, and if the histological result is expected 
to influence the therapeutic decision. The procedure of choice is 
thoracoscopy of multiple lobes and avoiding the most fibrotic areas. 
Progressive pulmonary fibrosis also leads to pulmonary hypertension, 
right-sided heart failure, and ultimately respiratory failure. It is frequently 
confused with heart failure or COPD [66].

A conceptual model of pathogenesis is that the recurrent subclinical 
epithelial injury is superimposed on an accelerated epithelial aging, 
which leads to an aberrant repair of the injured alveoli and deposition 
of ECM by myofibroblasts. Apparently senescence of epithelial cells 
is a central phenotype that favors pulmonary fibrosis [67]. Shortened 
telomeres, oxidative stress, proteostatic dysregulation, endoplasmic 
reticulum stress, and mitochondrial dysfunction decrease epithelial 
alveolar cell proliferation and increase the secretion of profibrotic 
mediators [68,69]. A study has identified abundance of prevotella, 
veillonella and escherichia in the bronchioloalveolar lavage of patients 
with IPF and abundance of streptococcus and staphylococcus have been 
associated with an increased risk of disease progression [70,71]. A 
number of non-genetic risk factors for IPF have been identified. Older 
age, male sex, and cigarette smoking are considered risk factors for IPF 
[72]. Observational data have implicated gastroesophageal reflux, [73], 
obstructive sleep apnea [74], air pollution [75], herpesvirus infection 
[76], and certain occupational exposures in interstitial lung disease.

Other form of fibrosis

Fibrosis also occurs in the joints, bone marrow, brain, eyes, 
intestines, peritoneum and retroperitoneum, pancreas, mediastinum 
and skin, and in these cases is driven by typical cellular and molecular 
processes. Mediastinal fibrosis is a rare disease mainly associated with 
histoplasmosis (USA), blastomycosis, aspergillosis, mucormycosis and 
cryptococcosis. It has also been associated with other granulomatous 
diseases (tuberculosis and sarcoidosis), autoimmune processes 
(Behçet's disease, rheumatoid arthritis, systemic lupus erythematosus), 
neoplasms (lung adenocarcinoma, Hodgkin's lymphoma), and 
radiotherapy [77]. Clinical features include the involvement of 
mediastinal structures such as superior vena cava, inferior vena 
cava, pulmonary arteries and veins, esophagus, and heart. Postulated 
pathogenic mechanisms include an abnormal autoimmune response to 
chronic infection and a fibrotic response that invades the mediastinum 
[78]. Retroperitoneal fibrosis is a rare condition characterized by 
inflammation and fibrosis in the retroperitoneal space; Most cases are 
idiopathic, but secondary causes include drugs, infections, autoimmune 
and inflammatory stimuli, and radiation. The major clinical sequelae 
of this condition are related to its involvement with structures in the 
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retroperitoneum, including arteries (leading to chronic renal failure) 
and ureters (leading to hydronephrosis). Primary myelofibrosis (PMF) 
is a myeloproliferative neoplasm characterized by a clonal proliferation 
derived from stem cells that usually, but not always, is accompanied by 
mutations (already described in the pathogenesis section), abnormal 
expression of cytokines, bone marrow fibrosis, splenomegaly, 
extramedullary hematopoiesis, constitutional symptoms, cachexia, 
leukemic progression and reduced survival [79].

In certain cancers, fibrosis is linked to TGF-β-integrin signaling 
[80]. In scleroderma, the prototypical fibrosing skin disease, skin 
fibroblasts and myofibroblasts are activated through the TGF-β–SMAD 
signaling pathway [81]. Nephrogenic systemic fibrosis, a debilitating 
condition that is marked by widespread organ fibrosis, occurs in 
patients with renal insufficiency who have been exposed to gadolinium-
based contrast material. Initial systemic inflammatory-response 
reactions and the reaction of gadolinium (Gd3+) ions with circulating 
proteins and heavy metals lead to the deposition of insoluble elements 
in tissue. Since no effective therapies have been identified, prevention 
is key. A recently recognized IgG4-related disease appears to involve 
autoimmune-driven inflammation that provokes fibrosis in multiple 
organs, including the pancreas, retroperitoneum, lung, kidney, liver, 
and aorta [82].

Therapy
Fibrosis and resultant organ failure account for at least one third 

of deaths worldwide [83]. Since fibrosis is common and has adverse 
effects in all organs, it is an attractive therapeutic target. Elimination of 
the inciting stimulus is the first and most efficacious approach. Fibrosis 
of parenchymal tissue usually progresses slowly, which suggests that 
therapy may be required for extended periods; slowing the progression 
of fibrosis may be a more realistic therapeutic goal than eliminating 
it. Fibrosis occurs by means of a dynamic process that involves the 
synthesis and deposition of extracellular matrix, and its reversion 
occurs by means of the elimination of effector cells and shifts in the 
balance of matrix synthesis and degradation. Although it is not clear 
what pathogenic or clinical factors promote reversibility, the regression 
of fibrosis has been shown to lead to improved clinical outcomes. The 
best indication that fibrosis is reversible and that this reversibility has 
positive effects on clinical outcomes is based on the treatment of liver 
and pulmonary fibrosis [84,85].

Heart

During the past several decades, the medical treatment of HF has 
dramatically progressed. Pharmacologic therapies in clinical use for 
heart failure that target the primary underlying disease appear to have 
a secondary effect on fibrosis. Traditional medical interventions to 
improve the prognosis of HF are beta-blockers, ACE inhibitors, and 
aldosterone antagonists. These three first-line interventions are called 
the “Golden Triangle” of HF treatment.

New approaches include decreasing production or increasing 
collagen degradation. Seralaxin is a recombinant form of human 
relaxin-2, inhibits cross-linking and collagen synthesis, and has 
entered into phase III clinical studies for heart failure [86]. Some 
studies indicate that the diuretic torasemide can inhibit lysyl-oxidase 
to limit the speed of collagen crosslinks and thus reduce myocardial 
fibrosis. The anti-TGF-β1 antibody can suppress collagen synthesis, 
but it is not specific for myocardium, since the inhibition of TGF-β1 
signals is systemic and may generate unexpected results in the attempt 
to suppress myocardial fibrosis. Studies in animals blocking miRNAs 

(anti-miRs) with oligonucleotides appear to reduce interstitial fibrosis, 
but there are still no clinical studies.

There are drugs that target the degradation of collagen. There 
are selective and non-selective inhibitors of MMPs. Batimastat, 
marimastat, GM-6001 (ilomastat or gelardin), PD-166793 and ONO-
4817 are non-selective inhibitors. However, semi-selective inhibitors 
(PY-2 and 1, and 2-HOPO-2) produce better results than non-selective 
inhibitors, since they are unstable due to proteolysis. PD-166793 
and CGS270223A can improve re-perfusion ischemia [31]. CMT3 
(chemically modified tetracycline-3) can inhibit MMP-2 and MMP-9 
and therefore cardiac remodeling. Obviously more studies are required 
to identify more specific objective sites [87]. A promising idea for 
the treatment of cardiac fibrosis is based on the premise that cardiac 
fibroblasts can be reprogrammed into cardiomyocyte-like cells [88,89]. 
It is not yet known if this type of therapy can be used in human.

Liver

The process of hepatic fibrosis is dynamic. Since hepatocytes are 
capable of regeneration, liver fibrosis may be especially amenable to 
therapeutic intervention, and even cirrhosis can be reversed [90,91]. 
Eradication of HCV infection, antiviral therapy for HBV infection, 
glucocorticoid therapy for autoimmune hepatitis, phlebotomy for 
hemochromatosis, relief of biliary obstruction, and cessation of alcohol 
consumption in alcoholic hepatitis each clearly reverses fibrotic change, 
and many of these treatments improve clinical outcomes [92,93].

Despite recent enthusiasm with the use of antioxidants in fibrosis 
and experimental studies, solid clinical efficacy data in humans are very 
limited [46]. Inhibition of liver damage can be implemented in several 
ways; namely: fibropreventive, fibrostatic or fibrolytic drugs. Obeticolic 
acid (OCA, and INT-747), has anticolestastial and hepatoprotective 
properties, increases insulin sensitivity, modulates the metabolism 
of fats and has anti-inflammatory and antifibrotic properties. Both 
alternatives are under clinical evaluation and OCA significantly reduced 
fibrosis in clinical work in patients with NASH [94]. OCAs and similar 
drugs target FXR receptors. Best known are the endogenous agonists of 
these FXR receptors such as chenodeoxycholic acid, deoxycholoic acid, 
cholic acid and lithocholic acid. In general, these medications improve 
glucose metabolism, increase insulin sensitivity, reduce hepatic 
lipogenesis and increase β-oxidation.

Drugs that reduce the intestinal absorption of cholesterol, 
increase bile flow and change the hydrophobicity index of the pool 
of bile acids, cause anti-inflammatory effects. UDCA (steroid bile 
acid ursodeoxycholic acid) and nor UDCA (short chain homolog) 
increase the cholehepatic shunt, are also therapeutic options 
[95,96]. An alternative that requires future studies in humans is to 
neutralize osteopontin (increases TGF-β and induces fibrogenesis) 
and the use of pentraxins which are proteins that bind directly to 
monocytes, neutrophils and macrophages, modifying their activation, 
dissemination and polarization and inhibiting their differentiation to 
fibrocytes [97,98].

Recent strategies are in development. For example, induce 
apoptosis, senescence or deactivation of the cells that produce ECM 
[99]. Sequestering profibrotic cytokines could be effective. For 
example, sequestering TGF-β and its receptors, or PDGF and its signals 
with multikinases and aptamers, was investigated experimentally and 
in preclinical studies [100]. An antibody against lysyl-oxidase-like 
2 (LOXL2), involved in collagen crosslinking; simtuzumab, has not 
shown activity in patients with hepatic fibrosis [101]. Microbiotic is 
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the sum and composition of the microorganisms of the gastrointestinal 
tract. It is conceivable that manipulating it with antifibrotic microbes 
could, in the future, be established as a treatment in human liver disease 
[102,103].

Viral eradication (antiviral drugs), removal of parasites 
(praziquantel for Schistosma), and suspension of toxins or drugs can 
restore liver architecture. It should be remembered that this fibrotic 
process is dynamic and even advanced fibrosis can be recovered 
[104]. Portal thrombosis and venous obstruction are frequent in 
liver cirrhosis and advanced fibrosis. Use of low molecular weight 
heparin (enoxaparin) can prevent portal vein thrombosis, hepatic 
decompensation, and reduce mortality in patients with advanced liver 
cirrhosis [105].

NAFLD (non-alcoholic fatty liver disease) (afflict 30% of the 
general population in the Western world), NASH (non-alcoholic 
steatohepatitis), diabetes mellitus, and metabolic syndrome could be 
prevented with a healthy diet, weight loss and regular physical activity, 
but the hectic and stressful nature of modern life, and the industry's 
propaganda of foods rich in sugars and fats impede such adjustments. 
Several pharmacological attempts are under scrutiny. In 516 patients 
with biopsy-proven NASH, the use of thiazolidinedione (rosiglitazone 
or pioglitazone) was associated with improvement in NASH resolution 
and fibrosis, even in patients without diabetes [106]. Other candidate 
drugs are: the glucagon-like peptide-1 receptor (GCP-1R), and the FXR 
agonist as OCA (INT-747) that is currently in phase 2 and 3 studies in 
various types of fibrosing liver disease. Vitamin E has beneficial effects 
on liver enzymes, steatosis, inflammation, hepatocyte ballooning and 
hepatic fibrosis [107]. Selonsertib (CS-4997), an inhibitor of apoptosis 
signal-regulating kinase (ASK1) has been shown to reduce fibrosis in 
patients with NASH and fibrosis in stages 2-3 [108]. Other drugs such 
as cenicriviroc and elafibronor are still under investigation [109-111].

Kidney

Like the therapies used to treat cardiac fibrosis, those typically 
used to prevent renal fibrosis target the underlying disease processes 
and as such involve the treatment of hypertension and diabetes. One 
target is the renin–angiotensin system. This approach involves the use 
of ACE inhibitors and angiotensin-receptor blockers that ameliorate 
renal damage and fibrosis through multiple pathways, including the 
suppression of the actions of TGF-β [112]. Therapies based on the 
antagonism of aldosterone that make use of mineralocorticoid receptor 
antagonists have been shown to inhibit or slow the progression of 
fibrosis in humans [113]. Novel approaches to the treatment of fibrosis 
of the kidneys include those that target bone morphogenetic protein-7, 
NADPH oxidase (NOX) (NOX1 and NOX4), and the SMAD3 and 
SMAD4 pathways [114].

Lung

The lung presents special challenges with regard to therapy targeting 
fibrosis. On the one hand, the lung has easily measured clinical features 
that allow for assessment of lung function, a surrogate for fibrosis. 
On the other hand, pulmonary fibrosis appears to be less dynamic 
than fibrosis occurring in other organ systems. Non-pharmacologic 
management strategies help patients with IPF live healthier, more 
normal lives, and the importance of these approaches cannot be 
overemphasized. Smoking cessation should be a priority for patients 
who are actively using tobacco products. Influenza, pneumococcal, 
and other age-appropriate vaccines should be administered [85]. 
Clinical practice guidelines strongly recommend supplemental oxygen 

for patients with IPF [63]. Oxygen administration reduces exertional 
dyspnea and improves exercise tolerance [115]. An oxyhemoglobin 
saturation of 88% or less at rest, during exertion, or during sleep 
should prompt initiation of home oxygen therapy [116]. Pulmonary 
rehabilitation, a structured exercise program designed for adults with 
advanced lung disease, has been shown to improve exercise capacity 
and health-related quality of life for patients with IPF [117].

Only a minority of patients with IPF receive a transplant [118]. 
Lung transplantation can prolong survival and improve quality of 
life for highly selected candidates [119,120]; however, only 66% of 
transplant recipients with IPF survive for more than 3 years after 
transplantation and only 53% survive for more than 5 years [118]. 
Common complications include primary graft dysfunction, acute 
and chronic forms of allograft rejection, cytomegaloviral and other 
infections, and cancer [118]. IPF has not been shown to recur in the 
allograft. Referral to a transplantation center should be made at the 
time of diagnosis, since the evaluation process and waiting time can last 
for months to years [121]. Common contraindications include recent 
cancer, advanced non-pulmonary organ failure, and lack of a reliable 
social support system [122]. Poverty, meager health budgets and little 
experience of health personnel with this tool threaten the possibility of 
implementing them successfully in third world countries,

Treatment guidelines for IPF include a strong recommendation 
against the use of prednisone in combination with azathioprine 
and oral N-acetylcysteine, a regimen associated with an increase in 
mortality by a factor of 9, as compared with placebo. Interferon-γ, 
[123], endothelin antagonists, [124] and warfarin [125] are ineffective 
or harmful in patients with IPF. The Food and Drug Administration has 
appropriately warned consumers against various unapproved stem-cell 
“therapies” advertised for the treatment of IPF [126]. Although current 
guidelines recommend the use of antacid therapy to treat IPF, there 
are no data from clinical trials to support this recommendation [63]. 
More recent data suggest that antacid therapy may increase the risk of 
respiratory infections in patients with IPF [127].

Two medications, nintedanib and pirfenidone, have been shown 
to be safe and effective in the treatment of IPF; both are recommended 
for use in patients with IPF [63]. In placebo-controlled, randomized 
trials, each drug has been shown to slow the rate of FVC decline by 
approximately 50% over the course of 1 year [128,129]. Both have 
shown some efficacy in reducing severe respiratory events, such as acute 
exacerbations, and hospitalization for respiratory events [130,131]. 
Pooled data and meta-analyses suggest that these agents may reduce 
mortality [132,133]. The cost of each medication is estimated to exceed 
$100,000 annually. Again, in low-income countries it is very difficult to 
implement these therapies on a regular basis for patients with IPF due 
to its high cost, especially that they are of indefinite use.

Nintedanib is a tyrosine kinase inhibitor that targets growth factor 
pathways, including those downstream from VEGF receptors 1, 2, 
and 3, CGF receptors 1, 2, and 3, and PDGF receptor. Patients should 
initially be prescribed 150 mg of nintedanib, to be taken by mouth twice 
daily. The dose can be decreased to 100 mg twice daily if unmanageable 
side effects occur. The medication should be taken with food and 
can be continued indefinitely. Patients taking nintedanib commonly 
have diarrhea, which can often be managed with antidiarrheal agents 
[128]. Cases of drug-induced liver injury have been reported. Liver 
function should be tested at baseline, monitored monthly for the first 
3 months, and then monitored as clinically indicated. Since nintedanib 
is associated with a small increase in the risk of bleeding, this agent 
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should be used with great caution, if at all, in patients receiving 
full-dose anticoagulant therapy. Atheroembolic events, including 
myocardial infarction, have also been reported with nintedanib [128]. 
Caution should be used when treating patients with cardiovascular risk 
factors, including those who have coronary artery disease.

Pirfenidone has a number of anti-inflammatory and anti-fibrotic 
effects, including inhibition of collagen synthesis, down-regulation of 
TGF-β and TNF-α, and a reduction in fibroblast proliferation [134]. 
Pirfenidone is prescribed in an escalating-dose fashion over a 14-day 
period: 267 mg (one capsule) by mouth three times daily for 1 week, 
534 mg (two capsules) three times daily for 1 week, and 801 mg (three 
capsules) three times daily thereafter. Patients can subsequently be 
transitioned to an 801-mg tablet three times daily. Pirfenidone must 
be taken with food and can be continued indefinitely. Common side 
effects, such as anorexia, nausea, and vomiting, [129] can often be 
ameliorated by judicious use of antacids and antiemetic agents. In 
some cases, side effects are severe enough to require a lower total daily 
dose (six to eight capsules daily). A photosensitive rash can also occur. 
Liver function should be monitored periodically.

Pirfenidone and nintedanib provide similar benefits [135,136]. 
Recent data on treatment that combines these agents suggest 
clinically significant gastrointestinal side effects [137]. It is difficult to 
recommend one agent over the other, since there have been no head-
to-head comparisons.

There are several possible approaches for the management of 
cough in IPF, though none are universally effective. Thalidomide be 
used to ameliorate cough in patients with IPF [138]. An observational 
study suggests that pirfenidone may attenuate cough [139]. The P2X3 
antagonist AF-219/MK-7264 (gefapixant) suppresses idiopathic cough 
[140]; a trial of this agent in patients with IPF has been completed 
(NCT02502097). Finally, an inhaled cromolyn preparation was shown 
to ameliorate cough in patients with IPF [141]. 

Future directions
Fibrosis is a hallmark of pathologic remodeling in numerous 

tissues and a contributor to clinical disease. Thus, it is important to 
understand the central mechanisms underlying the fibrogenic process. 
A major conserved cellular element is the activated fibroblast, also 
known as a myofibroblast, which produces abundant amounts of 
ECM. Some of the major conserved molecular processes involve 
TGF-β, PDGF, CTGF, vasoactive compounds (endothelin-1 and 
angiotensin II), and integrin–extracellular matrix signaling pathways. 
The fact that tissue fibrosis is remarkably plastic suggests that many of 
these major elements of disease pathogenesis may emerge as targets 
of novel therapeutic interventions. Novel preventive interventions, 
evolving use of screening biomarkers, and the eventual ability to 
target newly discovered risk factors for fibrosis could lead to a decline 
in the incidence of associated diseases in coming years. Advances in 
therapeutics, including individualized approaches and interventions 
to halt collagen deposition, may turn the associated pathologies into 
lifelong chronic diseases.
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