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Abstract
We have performed a comparison of computer-generated random sequences with tRNAs nucleotide sequences present in Bacteria represented as random walks. 
Nucleotide sequence data of tRNA genes were obtained from the Institute for Genomic Research (TIGR) and the GeneBank library. Random sequence data (white 
noise) were obtained from the algorithm by Press and Teukolsky. Random walks of nucleotide sequences were obtained by letting the orbit walk a unit step in one 
of four directions (down, left, right, and up), depending upon the next base (A,C,G, and T) in the sequence, and the distances from the origin calculated. The Visual 
Basic routines here applied to perform the analysis are presented. Relative Lempel-Ziv complexity. Entropy (sum of the positive Lyapunov indexes) and Hurst 
indexes of nucleotide sequences and of computer-generated random data were evaluated over the distances of their random walk. Our data show that the values 
of nonlinear parameters obtained from the bacteria are lower than the values of randomly generated sequences (p<0.01, p<0.05, p<0.01), meaning that the tRNA 
sequence is more ordered than a pure destructured random data and it owns a “memory”. The observed deviation from pure randomness should be arisen from some 
constraints like the secondary structure of this biologic macromolecule and/or from the peculiar origin of this macromolecule by repeated subunits. These data indicate 
that evolution earlier chose nonrandom “alphabets”: order together randomness were present at the dawn of life. Our method, here presented and described, provides 
an efficient tool to assess the amount of order/disorder in the primary structure of nucleic acid sequences. 
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Introduction
Billions years ago, according to the exon theory of genes [1] small 

RNAs translated into peptides of 15-20 amino acids: minigenes of 
pre-tRNAs codifying RNA hairpin structures. The dimerization of 
two equal RNA hairpin structures may have lead to the formation 
of the cruciform structure of the tRNA molecule: tRNA reflects the 
primordial genes of that era. Prokaryotic cells lived during the earliest 
time (3.5 billion years ago): these microorganisms retain ancestral 
signatures in their tRNAs [2,3]. In order to test the hypothesis that 
the nucleotide sequences of the primitive informational polymers 
(tRNAs) might not be chosen randomly, we introduce the comparison 
of computer-generated random sequences with tRNAs nucleotide 
sequences present in the bacterial genomes based on the description of 
nucleic acid sequences as random walks and their analysis by nonlinear 
approaches over the distances from the origin.

Methods
Nucleotide sequences

Nucleotide sequences of bacterial nonintronic tRNAs were obtained 
from the GenBank library [http://www.ncbi.nlm.nih.gov/genbank]. 
Fifty sequences of five tRNAs (tRNA-gly, tRNA-val, tRNA-glu, tRNA-
arg, tRNA-ala), the oldest tRNA known, collected from ten Bacteria 
(Acaryochloris m, Bacillus c, Burkholderia m, Chromohalobacter s, 
Clostridium b, Deinococcus r, Ehrlichia r, Escherichia c, Magnetococcus_
MC-1, Staphylococcus a) were analyzed.

Random data

Random data (white noise) were obtained from the algorithm 
by Press and Teukolsky [4] and their orbit walks were obtained 
generating an uniformly and randomly distributed data points over the 
unit interval (0 to 1). Based on the graphical approaches by Hamori 
and Ruskin and Mizrahi & Ninio [5,6], we have analyzed nucleotide 
sequences of nonintronic tRNAs and of computer-generated random 
data describing them as random walks [7] by means of softwares 
developed in Visual Basic language by the first Author of the paper 
(Figures 1 and 2). 

Random walks

Random walks of nucleotide sequences were obtained by letting 
the orbit walk a unit step in one of four directions (down, left, right, 
and up), depending upon the next base (A,C,G, and T) in the sequence, 
and the distances from the origin calculated (Figure 1).

Transforming Nucleotide Sequences in Random Walks

http://www.ncbi.nlm.nih.gov/genbank
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To obtain the random walks of random data, the sequence was 
divided in 4 intervals to which A,C,G,T letters were attributed (Figure 2) 
and distances from the origin over the random walk obtained as above 
(Figure 1). Fifty random sequences (length, n = 80) were evaluated. 

Transforming Random Data in Random Nucleotide Sequences

 Nonlinear parameters

Relative LZ complexity and Entropy (sum of the positive Lyapunov 
exponent), have been calculated (Chaos Data Analyzer Pro v. 2.0 [8]) 
from the distances calculated over the random walks. 

Relative LZ complexity, LZ: Relative LZ complexity is a measure 
of the algorithmic complexity of a time series. According to the Kaspar 
and Schuster algorithm [9], each data point is converted to a single 
binary digit according to whether the value is less than, or greater than, 
the median value of a set of data points. 

White noise (a pure random signal, common in physical systems, 
that exhibits equal power across all the component frequencies of the 
signal), has an LZ value that is close to 1.0. Pink noise (flicker noise 

or 1/f noise), exhibits decreasing power as frequency increases, and is 
associated with a relatively low LZ value; it is common in biological 
systems (e.g. heart rate). A sine function with 10% superimposed 
Gaussian white noise yields an LZ value that is close to zero. The 
algorithm for calculating LZ, applied in the present paper, converts it 
to a single binary digit which indicates whether the value was less than, 
or greater than, the median value of the set of such data points.

Entropy, K: The entropy index chosen here [10] is a measure of 
the disorder in a data set and was calculated as the sum of the positive 
Lyapunov exponents. 

Randomness is indicated by numerically high values of entropy. 
Ordered series like the sine function exhibit values that are close to 0.

Hurst exponent, H: The Hurst exponent is the slope of the root-
mean-square displacement of each data point versus time. The H value 
for white noise is equal to 0. If H ≠ 0.5, then correlation exists, the noise 
is “colored” and the process exhibits a “memory”: if the exponent is 
greater than 0.5, persistence occurs (past trends will statistically persist 
in the future, see sine function), and, vice versa, if H is less than 0.5, 
anti-persistence occurs (past trends tend to reverse in the future, e.g., 

 

Figure 1. Visual Basic subroutine: tRNA random walk (“orbit” that collect distances from the origin for each base). Base ratio, RT, of nucleotide sequence data was also calculated 
(trna.txt).
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pink noise and biological signals such as heart rate). For Brownian 
motion, a random process in which, on average, each point moves 
away from its initial condition by an amount that is proportional to the 
square root of time, the Hurst exponent exhibits a value which is close 
to 0.5 (no memory) [11].

Statistical tests

Mann-Whitney U test was used to ascertain the difference between 
the groups.

Results
Two-dimensional random walks of bacterial tRNAs appear less 

“diffused” than the ones of computer-generated random data (Figure 
3). Relative Lempel-Ziv, Entropy and Hurst indexes calculated over the 
distances of random walks in bacterial tRNAs are statistically lower 
than the ones of computer-generated random data (p<0.01, p<0.05). 
Table 1 summarize the results. 

Graphical representations of computer-generated random data 
(top) and of a tRNA (bottom) as random walks. The sequence begins 
at the origin in the lower right corner of the graph. tRNA random walk 
appears less “dispersed” than computer-generated random sequences. 

Relative Lempel-Ziv, Entropy and Hurst indexes calculated over 
the orbit walk (distances) of bacterial tRNAs present significant lower 
values compared to the ones of random sequence data (**1, p<0.01; 
*1, p<0.05), meaning a more ordered structure in the nucleic acid 
sequences than in destructured random data. Moreover, the tRNA 
sequence owns a “memory” (H ≠0.5).

Discussion
A number of studies have been devoted to examining the structure 

of nucleic acids sequences subjected to a variety of mathematical 
transforms, in order to uncover pattern irregularities in the DNA, that 
often result from constraints and are therefore frequently associated 
with function [12-19], also using graphical approaches [5,6]. By our 
approach, ancient informational polymers, old bacterial tRNAs [20], 
present significant lower values of LZ complexity, Entropy and Hurst 
indexes than random sequence data (white noise). These data reveal 
a significant shift from destructured randomness (white noise), i.e. a 
more ordered structure than a pure random sequence, also confirming 
our previous results performed with different nonlinear indexes [21]. 

The observed deviation from pure randomness may be arisen 
from some constraints like the secondary structure of this biologic 
macromolecule and/or from the peculiar origin of this macromolecule 
by repeated subunits [1].

Gayle and Freeland [22] showed that the 20 amino acids present 
in the LUCA were not chosen randomly and O. Weiss et al. [23] 
showed a significant small reduction of the Shannon entropy (-1%) 
in protein sequences compared to random polypeptides. Together 
with our results, these data seems indicate that evolution earlier chose 
nonrandom “alphabets”: order together randomness were present at 
the dawn of life. 

Conclusion
It has been shown that tRNAs sequences are more ordered than 

 
Figure 2. Visual Basic subroutine: a string of random data is transformed in a random nucleotide sequences. 
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destructured random data

tRNA-arg
Figure 3. Random Walks of Computer-Generated Random Data and of tRNA.

random data  
(white noise)  

bacterial tRNAs

LZ 0.74 (0.04) 0.49 (0.03) **1

Entropy 0.44 (0.1) 0.33 (0.03) *1

Hurst 0.49 (0.02) 0.35 (0.02) **1 

Table 1. Nonlinear analysis of the distances over random walks: tRNAs of Bacteria vs. 
computer-generated random data (mean values (SD).

destructured random ones (white noise). Lempel-Ziv and Entropy 
evaluations of nucleic acids sequences described as random walks 
provides an efficient tool to assess the amount of order/disorder in the 
primary structure of nucleic acid sequences.
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