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Abstract
Purpose: Automated image analysis tools have the potential to improve the objectivity of the diagnostic process. The study and improvement of the numerical 
methodologies behind these tools is, therefore, crucial. Volumetric, densitometric, and fractal analysis concepts were, thus, explored in the setting of computed 
tomography (CT) imaging of different lung morphologies.

Material and methods: Thoracic CT scans were acquired for five sheep prior to and after smoke inhalation injury. Software was developed to segment the lungs from 
the digital image data and to estimate the morphometric parameters “volume”, “Hounsfield unit-density” (HU), and “fractal dimension”. These parameters were 
estimated for each scan, once from the complete dataset, covering the entire a range of -1000 to 399 HU, and once for 28 consecutive data subsets, with a width of 
50 HU each. T-test statistics were used to investigate group differences “before” and “after” smoke inhalation, based on a 0.05 significance level.

Results: For the complete data set, group differentiation into “before” and “after” smoke in-halation was feasible only with volumetric analysis. Analysis of 28 smaller 
HU subsets, on the other hand, allowed group differentiation with all three morphometric parameters.

Conclusions: The analysis of small HU subsets can be helpful in differentiating groups and may be a useful approach for many image analysis projects.
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Key points:
•	 Different lung morphologies in a smoke inhalation model 

could be differentiated by automated image analysis software.

•	 Volumetric analysis can be superior to densitometry or fractal 
dimension characterizations for complete lung data sets.

•	 Volumetric or fractal image analysis may be superior to 
densitometric evaluations when smaller HU-ranges are used and the 
significance limit is raised to 0.001.

•	 Fractal dimension characterizations can be as useful as 
volumetric descriptions.

Introduction
Computer-aided analysis of digital image data promises to become 

an important diagnostic tool in in radiological pulmonology. The 
numerical tools used for such purposes have the advantage of being 
reproducible, objective, and reliable, since they rely on a constantly 
per-forming mathematical algorithm, and are, therefore, not affected 
by inter- or intra-observer variability. Dinkel et al., for example, 
showed that computer-assisted size assessment of primary lung tumors 
could reduce inter-observer variability by about one-half to one-third 
compared to standard manual measurements [1]. Further, Wulff et 
al. showed that the precision and inter-rater variability of computer-

assisted volumetric measurement was superior to manual estimates 
when the “change over time” of lesions was investigated in lung, liver, 
and lymph node metastases [2].

Volumetric analysis and Hounsfield unit (HU)-based densitometry 
are the numerical methods most often used as image analysis tools 
in radiological pulmonology [3]. Although the concept of fractal 
geometry is only rarely applied, it is perfectly suited to characterize 
irregular geometrical shapes in terms of the fractal dimension D. Three 
PubMed searches, performed in October 2016, were carried out to find 
out how frequently these methods were applied to lung investigations 
performed on (CT) image data. Each search query contained the 
terms “lung” and “CT”. Searches with the additional term “volumetry” 
or “volume analysis” yielded 1574 search results, searches with the 
additional term “densitometry” or “histogram analysis” yielded 293 
results, and searches with the additional term “fractal” yielded only 39 
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results. Thus, while researchers appear to be generally aware of volume 
analysis and densitometry as methods, this does not seem to be the 
case for applications of fractal geometry. This study, therefore, placed 
particular focus on this concept.

The image analysis tools that were investigated in this study were 
applied to CT datasets of sheep lungs that were acquired “before” and 
“after” a smoke inhalation procedure. The data were acquired in the 
setting of a respiratory distress syndrome (ARDS) research project. 
Respiratory distress syndrome is a life-threatening illness that consists 
of acute hypoxemic respiratory failure with bilateral non-cardiogenic 
pulmonary infiltrates. Approximately 200,000 patients suffer from 
ARDS in the United States, each year [4]. ARDS is associated with high 
mortality and about one-third of patients die. In addition, in the United 
States, 1.25 million burn injuries occur every year and 5 to 35% suffer 
from concomitant smoke inhalation injuries [5,6]. Smoke inhalation 
frequently causes severe ARDS and significantly increases the mortality 
of burn victims. The pathophysiology of ARDS and its progression 
are not completely understood. The aim of the broader study was to 
characterize the morphology of ARDS following smoke inhalation 
injury by means of computed tomography imaging. Be-cause high 
quality interpretation of data is without question as important for 
research as it is in daily clinical diagnostics, three questions were in 
the foreground of this methodological investigation: One, can different 
lung morphologies, caused by the injury, be characterized by image 
analysis software that evaluates the parameters “volume,” a HU-based 
radiological density that will for reasons of simplicity henceforth be 
called “density,” and the fractal dimension, D. Two, based on the 
assumption that these morphometric parameters can successfully 
distinguish lung phenotypes, is there an optimal parameter, 
“volumetric analysis,” “density,” or “D,” that can distinguish between 
the lung morphologies “before” and “after” injuiry more significantly 
or more reliably than the others. As it is an established practice for 
radiologists to choose specific “window width” and “window level” 
settings when they diagnose CT images, this approach was also applied 
in this investigation and adapted in the sense that the sheep lungs were 
not only segmented in a wide HU-range from -1000 to 399 HU, but 
also in many subsets, where each of the subsets covered only a small 
HU-range. Hence, the third question is are there differences in the 
results for the parameters “volume,” “density,” or “D” that depend on 
a specified HU-range of a set. Or, simply put, is it helpful to analyze 
small HU-ranges.

The principal aim of this interdisciplinary study was to improve 
image analysis methods that can then be used to simplify the diagnostic 
work of radiologists.

Materials and methods
Sheep experiment

This study was approved by the Animal Care and Use Committee of 
the University of Texas Medical Branch and conducted in compliance 
with the guidelines of the National Institutes of Health and the 
American Physiological Society for care and use of laboratory animals.

Five healthy adult female sheep weighing 30-45 kg were included 
in this study. Food was taken away 24 hours prior to the inhalation 
injury, but all animals had free access to water. Following induction 
of anesthesia with ketamine (500 mg intramuscular, 300 mg 
intravenously), endotracheal intubation was performed. Anesthesia 
was maintained using an isoflurane (1.4 – 1.8 vol%) – oxygen mixture. 
The right femoral artery was cannulated with a polyvinylchloride 

catheter (Intracath, 16-G, 24 inches, Becton Dickinson Vascular 
Access, Sandy, UT) for continuous measurement of systemic arterial 
pressure and intermittent sampling of arterial blood. A thermodilution 
catheter (model 93A-131-7F, Edwards Critical Care Devision, Irvine, 
CA) was inserted into the right external jugular vein through an 
introducer sheath (Edwards Lifescience, Irvine, CA) and advanced into 
the common pulmonary artery. A Foley urinary retention catheter was 
inserted.

The animals were then transferred into the Computer Tomographic 
unit of the Department of Radiology and received high resolution CT-
scans as well as scans of the lung (as described below).

After the imaging procedure, the animals were transferred back to 
the Animal Critical Care Unit and received smoke inhalation injury 
according to an established protocol, previously described in detail 
[7]. In brief, the sheep, still in deep anesthesia, were insufflated with 
a total of 48 breaths (four sets of 12 breaths each) of cotton smoke. 
The smoke was applied using a modified bee smoker filled with 40 g 
of burning cotton toweling and connected to the tracheostomy tube 
via a modified endotracheal tube containing an indwelling thermistor 
from a pulmonary artery catheter. During the insufflation procedure, 
the temperature of the smoke was monitored carefully and not allowed 
to exceed 40°C. Arterial carboxyhemoglobin concentrations were 
determined immediately after each set of smoke inhalation.

After the smoke inhalation injury, the animals were mechanically 
ventilated and maintained under deep anesthesia using the isoflurane-
oxygen mixture as described above. The sheep were resuscitated with 
lactated Ringer´s solution and allowed to recover for 24 hours and then 
received another set of CT exams (as described below).

After the imaging, the animals were transferred to the Animal 
Critical Care Unit and euthanized using an intravenous injection of 60 
ml saturated potassium chloride. The lungs were then harvested and 
prepared for pathological and histological evaluations.

Computed tomography imaging

The imaging studies were performed on a second-generation DSCT 
system (Somatom Definition FLASH, Siemens Healthcare, Forchheim, 
Germany). The animals were positioned on the CT table in a prone 
position to simulate a physiological scanning situation for the animals.

To analyze the anatomical structures of the lung, high resolution CT 
scans in in- and expiration were performed, with and without contrast 
agent. Eighty ml of contrast medium (Isovue 370, Bracco Diagnostics 
Inc., Princeton, NJ) at a flow rate of 4 ml/s, followed by 40 ml of saline 
injected at the same flow rate, were administered. The scan parameters 
were as follows: attenuation-based tube current modulation; rotation 
time, 0.5 second; collimation, 14 x 1.2 mm; pitch, 0.7. The CT images 
were reconstructed in the axial, sagittal, and coronal orientation using a 
medium soft convolution kernel optimized for high resolution images 
at a 1.5 mm slice thickness with 1 mm increment.

Numerical lung analysis: Lung segmentation; volumetric 
analysis; densitometry; fractal dimension estimation

Lung segmentation: Methods of lung segmentation are well 
established [8-10]. The lung segmentation approach used in this study 
is described in detail in ref. [11]. An adapted threshold segmentation, 
guided by the low radiation attenuation of ventilated lung tissue, was 
applied. This approach segments those parts of the respiratory system, 
including the trachea and lung tissue, that correspond to the anatomical 
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definition of a healthy lung, in which the complete lower respiratory 
system is partitioned. In contrast, in the case of a lung heavily affected 
by smoke, the segmentation approach excludes radiologically denser 
lung tissue. See the segmentation examples in Figure 1.

Definition of lung subsets, volume and density analysis: The 
segmented data set of a sheep’s lung consists of voxels that are defined 
by their spatial x-, y-, and z- coordinates, and by their radiological 
density value, which is the HU. The complete set of a segmented lung 
is called L. L essentially consists of voxels with HU values in a range of 
-1000 to 399. This is written as L[-1000,399], where the figures in the square 
brackets indicate the specified HU-range of the voxels that belong to 
the set. Here, [ ] { }1000,399 1000 399L l L HU l HU− = ∈ − ≤ ≤ . Rarely occurring 
voxels, with HU values larger than 399, were ignored. The fraction 
of these voxels was below 0.3% and corresponded to calcified blood 
vessels. Since L[-1000,399] is basically identical to L, L[-1000,399] is also called 
the “complete set” later in the text.

Next, the set L[-1000,399] was divided into 28 sets of equal width 
of 50 HU. These subsets began at -1000 HU and ended at 399 
HU. The first subset of L[-1000,399], therefore, contained only voxels 
with HU values from -1000 to -951 HU, and was written, in 
the HU-range notation introduced above, as L[-1000,-951], where 

[ ] [ ]{ }1000, 951 1000,399 1000 951L l L HU l HU− − = ∈ − − ≤ ≤ − ; the second 
subset was, then, L[-950,-901], and so on, up to the last subset, L[350,399]. 
Figure 2 illustrates four different sets: The top row shows images that 

belong to the complete HU-range from -1000 to 399; the three bottom 
rows visualize images of smaller HU-range subsets L[-600,-551], L[-
600,-551], and L[-600,-551].

The definitions of the parameters “volume,” “density,” and “fractal 
dimension” are given be-low. The parameters were applied and 
estimated in the same way for each segmented lung of the five different 
sheep, “before” and “after” the smoke inhalation experiment, within 
each of the HU-ranges defined above, both for the wide HU set range 
[-1000, 399] and for the 28 small 50 HU-wide HU-ranges.

The lung volume of a scanned sheep, v(i; L[HU-range]), was 
defined as the number of all voxels, p, of a set L[HU-range] multiplied 
by a volumetric scale factor, s, related to the voxel size:

[ ]( ) [ ]( ), ; ii L HU range i L HU rangev p S− −= 		                  (1)

Here, “i” is the sheep number, from 1 to 5, for the group of n = 5 
sheep. The “HU-range” refers to the specified lower and upper limit of 
the chosen HU-range of a set, L[min HU, max HU].

Next, the average volume of all n sheep at their different HU-range 
set specifications, volume(L[HU − range]), was of interest:

[ ]( ) [ ]( );i L HU rangevolume L HU range v −− = , where 〈 . 〉 denotes 

the average volume of the 5 sheep, each estimated for their specified 
HU-range.

Figure 1. CT images with the corresponding segmentation results for air-filled lung regions sup-porting gas-exchange. Each column shows sectional images before and after smoke inhala-
tion for similar thoracal positions. The position of the thorax changes in each row from proxi-mal to distal, top to bottom.
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The “density” or mass of a scanned sheep, d(i; L[HU-range]), is 
defined as the sum of all HU of all voxels, q, of a set L[HU-range]:

[ ]( ) [ ]( )1
; ;p

qj
d i L HU range HU i L HU range

=
− = −∑     (2)

Here, “i” is again the sheep number, “HU-range” refers to the 
specified HU-range of a set, and “p” is the total number of voxels in a 
set, L[HU − range].

Next, the average “density” of all n sheep at their different HU-
range set specifications, density(L[HU − range]), was of interest, which 
was defined as follows:

[ ]( ) [ ]( );i L HU rangedensity L HU range d −− = , where 〈 . 〉 denotes 

the average density of the 5 sheep, each at their specified HU-range.

Measurement of the fractal dimension: The method that was 
used to numerically estimate the fractal dimension D was the classical 
“mass-radius relation”, which was applied in this study precisely as 
described in ref. [12]. An arbitrary voxel of the set under investigation 
is chosen as a center position, c. After that, the number, M, of voxels 
are counted within spheres of radius, r. M can, thus, also be denoted as 
M(r;c). If the studied structure is a fractal, M(r;c) grows as cDr :

( ); cDM r c rα 					                   (3)

Figure 3 illustrates an example of a double logarithmic plot used to 
evaluate D according to the power law (3). In the graph, cD D= , where 

Figure 2. Volume rendering images of different HU segmentation ranges taken from the same sheep. The images on the left show the lung structures prior to smoke inhalation; the images 
on the right show the highly fissured lung subsets after smoke inhalation. The HU-range of the visualized subsets is given below each row.
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〈 . 〉 denotes the average of 100 counting results for different center 
positions, c. The regression ranges, within which the linear regression 
is calculated to obtain D in such plots, were always chosen to be the 
same to allow a comparison of D-values from different animals and 
experimental groups.

In general, the fractal geometry concept enables the description 
of irregular geometrical shapes with non-integral D. The concept was 
introduced by B. Mandelbrot and is well de-scribed in ref. [13]. Figure 4 
shows examples of such fractals. A description of this well-documented 
concept is not the scope of this article and can be found in refs. [14-16].

Statistics
The Shapiro-Wilk test was used to test normal distribution. The 

f-test was used to investigate the homogeneity of variances, and paired 
t-tests were used to estimate the significance of differences of mean 
values of compared groups “before” and “after” smoke inhalation. Last, 
the effect strength, r, was calculated according to Eq. (4)

2

2
f

tr
t d

=
+

			   		                (4)

where “t” is the t-test “t” value and “df” is the degree of freedom.

IDL®, Version 8.4.0, a programming language from Exelis Visual 
Information Solutions, Boulder, Colorado, USA was used for the lung 
segmentation, the estimates of the morphometric parameters, and the 
statistics calculations. The used license included the IMSL statistics 
library.

Results
Table 1 summarizes the mean values, standard deviations, and p 

values of the morphometric parameters, “volume,” “densitometry,” 

and “D,” each before and after smoke inhalation, for the set containing 
the complete HU-range L[-1000, 399]. The p values support the 
assumption on a 0.05 significance level that the groups “before” and 
“after” smoke inhalation can be distinguished by volumetric analysis, 
while this assumption is not supported here by densitometry or fractal 
analysis.

Figure 5 shows the mean values and the standard deviation of 
the morphometric parameters “volume,” “densitometry,” and “D,” 
estimated for the 28 different, consecutive HU-ranges that were used to 
define the subsets beginning from [-1000,-949] up to the radiologically 
densest range of [350,399] HU. Results are shown for the groups 
“before” and “after” smoke inhalation. A logarithmic scale was chosen 
for “volume” and “density” so that variations in small volumes or 
densities are still visible.

Figure 6 shows the p-values as a function of the different HU 
subset ranges, calculated with the t-test, for the group comparisons 
“before” and “after” smoke inhalation, for the parameters “volume,” 
“densitometry,” and “D”. The Shapiro-Wilk test indicated that it is 
reasonable to assume that the data is distributed normally, and the 
f-test indicated that variances are homogenous for all groups compared 
by the t-test that had p values ≤ 0.05. The Shapiro-Wilk and f-test were 
calculated at a 0.05 significance level each. In addition to the p values, 
the effect size, r, for all parameters shown in Table 1 and Figure 6 were 
calculated. The average, r, of the group comparisons with p ≤ 0.05, was 
0.93 for the volumetric investigation, and 0.95 for each of the density 
and the fractal analysis group comparisons. The p values indicate that 
group differentiations were possible for many different HU subset 
ranges by all three morphological parameters.

Discussion
Discussion of the results of this study

In this investigation, the p value was used as a principal parameter 
to differentiate whether group discrimination could be assumed or 
not. As recommended by Bland and Altman [17] to test for group 
differences in small sample sizes, a paired t-test was used to calculate p. 

Figure 3. Example of a plot showing the counting results for the estimation of D of a lung 
subset in the mass-radius analysis. The x-axis shows the radius, r, in units of mm. The 
y-axis con-tains the averaged “mass” (i.e. the number of voxels in a binary image) within an 
increasing sphere set of radius, r, evaluated for 100 different, non-repeating center positions, 
c, of the sphere sets. The black marks and corresponding black regression line, which 
indicates the scaling range within which D is estimated by linear regression, correspond to 
the data set “before” smoke inhalation (D = 2.628 ± 0.069; correlation coefficient = 0.999; 
total voxel num-ber of the subset = 656023); the red marks and regression line belong to the 
data set “after” smoke inhalation (D = 1.956±0.106; correlation coefficient = 0.998; total 
voxel number of the subset = 23965).

Figure 4. Examples of three numerically-constructed fractal curves. The fractal dimension 
val-ues are given below each image. Note that the higher the value of D is, the more “space-
filling” the structure is. All of the structures possess an important property of fractals: 
self-similarity. This means small detail of the image will be indistinguishable from the 
original im-age when it is magnified to the size of the original image. This is similar to the 
morphological structure of the lung, in which larger airways keep bifurcating into smaller 
ones.

Statistic parameter volume analysis densitometry fractal dimension
mean value before 
smoke inhalation

3.2 ± 0.2 l 7.94E+08 ± 2.52E+08 HU 2.70 ± 0.03

mean value after 
smoke inhalation

2.2 ± 0.7 l 7.86E+08 ± 1.40E+08 HU 2.61 ± 0.05

p value (paired t-test) 0.050 0.945 0.196

Table 1. Morphometric analysis of the complete HU-range [-1000, 399].
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Since the effect size found in this investigation is in the order of at least 
0.93 in all group comparisons with p ≤ 0.05, one may conclude that the 
interpretation of p is unambiguous despite the small group size of only 
5 animals.

The p values in Table 1 suggest that only volumetric analysis 
supports the assumption that a significant differentiation between 
the groups “before” and “after” smoke inhalation is possible within 
a significance limit of 0.05, when the complete set L[-1000,399] is 
analyzed. This behavior is very different if one looks at the p values 
obtained in the group comparisons for the sets that cover a HU-
range of only 50 HU width. Here, many different HU subset ranges 
support the assumption that group differentiations are possible by all 
three morphological parameters, “volume,” “densitometry,” and “D.” 
Therefore, in answer to the first question in the introduction, successful 
group differentiation can be assumed for all three of the investigated 
parameters.

The second question was whether all three of the investigated 

image analysis methods are equally good in respect to their ability 
to allow successful group differentiations. Looking at the statistics of 
correctly true positive group differentiations, one finds that 22 out 
of 28 HU subranges were correctly identified by the volume analysis 
(79%) method; 18 of 28, by the density analysis (64%) method; and 
15 out of 28, by the fractal dimension analysis (54%) method. If one 
accepts this ranking method, it would seem that volumetric analysis 
is superior to the density analysis and fractal analysis methods, which 
are both basically identical in respect to their ability to differentiate 
groups. But if one raises the p significance limit from 0.05 to 0.001, to 
assume that a group differentiation is possible, only the volumetric and 
the fractal analysis method support the assumption that groups can be 
discriminated (Figure 6). Both of these methods are, therefore, superior 
to density analysis. And if one were to reject all results with p ≥ 0.0001, 
only the fractal analysis method would support the assumption that 
one HU subset can be successfully differentiated from another.

The third question was whether it is reasonable to analyze many 
small subsets of limited HU-range, rather than analyzing just one 
very large HU-range. The results in Figure 6 indicate that it is, indeed, 
advisable to investigate many smaller HU-ranges to explore group 
differentiations. Methods like density analysis or D analysis, which 
prove successful when small HU sub-ranges are studied, might, 
otherwise, be falsely considered useless. This sub-range approach to 
data analysis is similar to the one radiologists use when they specifically 
select window and level settings to visualize peculiarities in a CT data 
set. Our findings in this respect are also in agreement with the empiric 
knowledge in radiology that a falsely chosen window level may preclude 
a correct radiological diagnosis. This new insight can presumably also 
be applied to other investigations, in which the correlation between 
different diseases, or severities of a disease, and the morphological 
parameters “volume,” “densitometry,” or “D” are being explored. This 
is supported by further arguments given in the next paragraphs.

Plausibility of the results

The behavior of the HU subset ranges with low radiation 
attenuation, beginning from L[-1000,-951] to approximately L[-
700,-651], is plausible. Prior to smoke inhalation, the lung volume is 
much larger. The lung density exhibits similar behavior, due to the 
fact that many more voxels with low attenuation HU exist prior to the 

Figure 5. The group averages for lung subsets examined “before” and “after” smoke 
inhalation for volume estimates in units of [mm3], densitometry in [HU], and fractal D. 
The results are shown along with their standard deviations. Each of the three parameters 
were estimated from a subset that was defined by a specific HU-range L [HU-range], given 
on the x-axis.

Figure 6. Diagram of p-values that were calculated by paired t-tests comparing the mean 
values of the groups “before” versus “after” smoke inhalation for each of the parameters: 
volume (red line), density (green), and fractal D (blue); the 0.05 significance limit is 
shown as a dot-ted line. The corresponding mean values and standard deviations for each 
parameter are given in Figure 5.
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inhalation event, and the term “density” was defined as the sum of all 
HU of all existing voxels in a set, see Equation 2. The fractal dimension 
is also larger prior to the smoke inhalation event than afterwards. This 
is the same result that one finds when one looks at the D values from 
the analysis of the complete lung sets L[-1000,399] shown in Table 1. 
Hence, D can, again, be understood as a measure of the ability to fill 
a space and it, to a certain degree, follows the volume behavior. The 
interpretation of the fractal dimension is, actually, more complicated 
than the density or the volume parameters. This is because the fractal 
dimension incorporates geometrical properties as well as properties 
that are related to the density of the investigated structure. If D were to 
reflect volume only, the fractal dimension spectrum in Figure 5 would 
be identical with the volume spectrum in the graph. On the other hand, 
if D were to reflect density only, the fractal dimension spectrum in 
Figure 5 would be identical with the density spectrum. Instead, one 
finds that these spectra are different. Hence, the fractal spectrum 
contains additional information that may be relevant, for instance, to 
distinguish different experimental groups from each other.

Discussion of methodologies of this study

The segmentation process of the CT images “before” and “after” 
smoke inhalation that was fundamental to this numerical investigation 
was guided by the low radiation attenuation of lung tissue that contains 
air. For the healthy lung, this segmentation approach agrees completely 
with the anatomical definition of the lung shape defined as the lower 
respiratory sys-tem. By contrast, very radiologically dense areas in 
the smoke-affected lung are not completely segmented (Figure 1). 
Such missing regions may have HU values that are as dense as heart 
tissue. Although our segmentations of the smoke-affected lungs were 
partially incomplete, the segmentation approach was considered 
entirely satisfactory, as it allowed a significant differentiation between 
the two experimental groups by various morphometric parameters. In 
this pragmatic approach, this was all that was desired. Moreover, it is 
interest-ng to note that a group differentiation could, in particular, be 
achieved in the denser HU value ranges, beginning roughly with subsets 
at L[-550,-501] and denser. This indicates that enough of the denser 
tissue was segmented to make group differentiations possible. In these 
dense subsets, the volume was larger after smoke inhalation than before 
the inhalation procedure. At first, this finding is astonishing, given that 
the average complete volume of the lung decreased dramatically after 
smoke inhalation, see Table 1, but, with the volume data in mind, it 
is easy to understand the density behavior in the denser HU subset 
ranges: Since a larger volume of voxels with higher density can be 
found after smoke inhalation, the density necessarily also increases 
after smoke inhalation compared to the density before smoke in-
halation (Figure 5). The fractal dimension spectrum of the denser HU 
subsets in Figure 5 can be understood when one considers the volume 
and density properties within these sub- set ranges: The volume and the 
density increase after smoke inhalation compared to the status before 
the inhalation event. Since the fractal dimension is, in a certain way, a 
measure of the space-filling ability of a geometrical set, see Figure 4, 
the fractal dimension also increases after the smoke inhalation event.

Advantage of analysis of animal experiments

Prior to a clinical application, numerical image analysis methods 
must be thoroughly tested and well understood so that radiologists 
and patients can assess and trust their outcome. The easier it is to 
predict a diagnosis, the easier it is to assess methods that lead to that 
diagnosis. Numerical image analysis tools can be assessed in animal 
experiments in which an effect that has been purposely induced leads 

to a well-defined morphological change and causes group differences 
“before” and “after” the induced effect. An approach such as this 
was, for example, chosen by Obert et al., who studied asthma attacks 
induced by methacholine in mice in an acute asthma mouse-model 
[11]. The morphology of the lung “before” and “after” the attack was 
monitored with an experimental high-resolution flat-panel computed 
tomography system and also confirmed histologically. The resulting CT 
image data, which were perfectly designed for the study of computer-
aided diagnosis (CAD) projects, could then be viewed as an “in vivo 
phantom.” In the study, Obert et al. successfully applied the concept 
of fractal geometry. The fractal dimension, which serves as a measure 
to de-scribe the irregularity or the complexity of a geometrical set, was 
used to discriminate be-tween the different lung morphologies.

Examples of other fractal lung investigations

Gupta et al. investigated 65 patients suffering from asthma and 
compared them with 30 healthy volunteers by estimating changes in 
lung volume and by determining the fractal dimensions of segmented 
airway trees [18]. They found a significant reduction in volume 
and fractal dimension in asthmatics and concluded that this was a 
novel method with which to differentiate between different asthma 
phenotypes.

When Copley et al. analyzed CT images, they found that the fractal 
dimension and the mean lung density decrease in non-smoking urban-
dwelling older subjects compared to younger subjects [19].

Michallek and Dewey reported, in a review, that fractal 
characterizations were successfully applied to perfusion imaging of 
tumors of the lung, myocardium, kidney, skeletal muscle, as well as to 
the imaging of cerebral diseases [20].

In the literature, one can often read that the fractal dimension 
is a measure of the complexity of a system [21]. In this context, 
“complexity” is directly related to the fractal dimension, and the higher 
this value, the higher the said complexity of this system is. Many other 
investigations also show that a healthy system has a higher complexity, 
or larger fractal dimension value, than the diseased state. Boser et al., for 
example, evaluated silicon rubber casts of the human lung and found a 
significant difference between a healthy control group (D = 1.83) and 
patients suffering from asthma (D = 1.76) [22]. And Moledina et al. 
performed a fractal image analysis of skeletonized artery vessels that 
were segmented from the lung at different disease states of pulmonary 
hypertension [23]. The mild form had a D of 1.66, the moderate form 
had a D of 1.48, and the severe form had a D of only 1.27. An in-depth 
discussion of the theoretical background and meaning of D is beyond 
the scope of this article and can be found in the literature.

What are the next steps?

CAD methods definitely need to be able to do more than to be 
able to provide support for the distinction of “before” or “after” a 
smoke inhalation injury, as in this study. This information on its own 
would be completely trivial for radiologists. Useful CAD systems have 
to be able to help differentiate between many different diseases and 
categories of severity of a disease. In future investigations, the data 
from human patients should, therefore, be studied in this regard. The 
paired t-test could then be replaced by advanced classification methods 
like contingency table analysis, Bayesian classifiers (BC), support 
vector machines (SVM), or neuronal networks [24]. That this can be 
successfully applied, in principle, was shown by Xu and colleagues in 
2006 [25]. They combined volumetric results, HU histogram data, and 
fractal dimension values from regions of interest for 20 patients with 
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different lung diseases and used BC and SVM algorithms to perform 
classifications with a specificity and sensitivity of sometimes above 90%. 
With further detailed geometrical statistics, as from this investigation, 
it will hopefully be possible to improve the specificity and sensitivity of 
these classification methods.

Conclusion
In this study, which evaluated geometrical sets from CT image 

data, volume, density and fractal properties were compared “before” 
and “after” a severe event that changed the morphology of the lung. 
When the entire HU-range of the sets was analyzed, a significant group 
differentiation was feasible only with the volume analysis method. When 
the complete HU-range was divided into many separately analyzed 
small subsets, a spectrum that enabled a significant differentiation 
into groups “before” and “after” the inhalation event was obtained for 
each of the morphological parameters, “volume,” “density,” and “D.” 
As a function of the HU-separation range, each spectrum had its own, 
different behavior and, therefore, contained individual information 
not contained in the other spectra. To the best of our knowledge, 
this has never been shown in such detail in the literature so far. It is, 
thus, useful to investigate many small HU subranges rather than only 
one large HU-range. Furthermore, it is reasonable to investigate all 
three morphometric parameters individually, since they each provide 
specific information that can contribute to a more complete overview 
picture. Detailed knowledge of the properties of such morphometric 
parameters is fundamental to their successful application in automated 
image analysis projects and CAD.

Clinical relevance

•	 Although new and modern imaging techniques provide 
high-resolution images of all parts of the body, interpretation of the 
images remains very subjective and is highly dependent on the skills 
and the experience of the radiologist.

•	 Automated image analysis could introduce a major change 
in radiology by generating objective parameters that can simplify 
diagnosis for radiologists.

•	 An approach similar to that used in radiological diagnostics, 
in which “window width” and “window level” settings are carefully 
selected, was applied to the numerical anal-ysis of CT data sets in this 
study and enabled a significant differentiation between phenotype 
groups with densitometry and fractal methodology. This differentiation 
was otherwise only possible with volume analysis.
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