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Abstract
Acute myeloid leukemia (AML) is ranked as the sixth highest cause of cancer-related deaths. Leukemic stem cells (LSCs) are suspected to be the cause of AML’s 
relapse and resistance to conventional chemotherapy. LSCs and normal hematopoietic stem cells (HSCs) share many properties such as self-renewal capacity, which 
appears to be responsible for the maintenance of leukemia cells in bone marrow and peripheral blood. In recent years, significant achievement in understanding the 
LSCs’ biology and regulators has been made that opens new windows for targeting LSCs. Some of these strategies are directed against the signaling pathways such 
as Wnt, and others are directed against transcription factors such as nuclear factor kappa B (NF-κB). Research is also ongoing to look for epigenetic reprogramming 
of LSCs by targeting DNMT3A mutation. This review highlights studies that target the intrinsic LSC regulators.

Introduction 
Cancer stem cell (CSC) was defined by The American Association 

for Cancer Research Stem Cell Workshop as a cell within the tumor 
that is able to self-renew and gives rise to the different lineages that 
comprise the tumor [1]. CSCs, tumor-maintaining cells, or cancer 
stem-like cells represent malignant stem cells that have recently been 
thought to be the source of different human cancers [2]. These cells 
are typically rare and possess specific characteristics that make them 
different from other tumor cells. The properties of CSCs make the 
current chemotherapies ineffective. Moreover, targeting CSCs may 
represent a new and more selective approach in cancer treatment [2].

Acute myeloid leukemia (AML) remains a great hematological 
challenge for researchers. Every year around 20,000 new cases are 
diagnosed in the United States alone, with a death rate of more than 
50% [3]. AML is defined as a group of genetically and morphologically 
heterogeneous disorders characterized by the accumulation of blast 
cells in the bone marrow and blood [4]. 

AML’s relapse and resistance against conventional chemotherapy 
might be related to a small clone referred to as Leukemia stem cells 
(LSCs). LSCs, tumor-maintaining cells in leukemia, can be identified 
by their unique surface molecules (most LSCs present within CD34+/ 
CD38- clone), their ability to perform serial replanting in cytokine-
enriched methylcellulose media, and their limitless self-renewal ability 
in vitro. In a xenograft model, they caused leukemia and gave rise 
to progeny that have no further leukemia-initiating activity [4]. The 
frequency of LSCs varied between different AML samples and types, 
ranging from 1 in 104 to 1 in 107 cells, about 0.1 to 1% of the AML cell 
population [5].

In this review we present the latest therapeutic approaches targeting 
the intrinsic regulators of the LSCs such as Hedgehog and Wnt pathways 
and their effect on LSCs [6]. Targeting of the ATP Binding Cassette 
Transporter and ALDH enzyme also may have a role in increasing cure 
rates [7]. Additionally, epigenetic reprogramming of LSCs by targeting 
the DNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutation is 

another mechanism that increases chemotherapeutic efficacy [8]. A 
significantly higher expression of apoptotic receptors in LSCs might 
be suitable for selective eradication of LSCs by targeted apoptosis 
induction [9]. 

Properties of LSCs
Two main properties that are the cornerstone for LSCs’ long-term 

survival are the maintenance of LSCs’ quiescent state and resistance 
to cytotoxic agents [4]. LSCs can remove potentially toxic agents from 
the cell through the unique expression of the p-glycoprotein multidrug 
resistance efflux pump, also known as MDR1. This might play an 
important role in LSCs’ resistance to chemotherapy [10].

Recent studies regarding the self-renewal activities of LSCs 
demonstrate the important role of Bmi-1 [11], Wnt/β-catenin [12], and 
Hedgehog [13] in this phenotype. Also, over-expression of Hox genes, 
especially HoxA9, has been demonstrated to have a critical role in the 
pathogenesis of MLL-AF9-induced AML [14]. On the other hand, 
LSCs may evade apoptosis by the upregulation of nuclear factor kappa 
B (NF-κB) [15].

Strategies for AML treatment
LSC targeting is the new hope to eradicate AML without harm to 

normal hematopoietic stem cells (HSCs). It is important to overcome 
the properties that make LSCs resistant to therapy such as their ability 
for limitless self-renewal [16].
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Eliminating LSCs’ self-renewal mechanisms

There are four main signaling pathways that allow HSCs to self-
renew: Hedgehog (Hh), Wnt/β-catenin, homeobox (HOX), and Notch. 
Recent studies reported that LSCs also depend on these pathways for 
their self-renewal [6].

Hedgehog pathway is initiated by binding of one of the Hh ligands 
(Sonic Hedgehog (Shh), Desert Hedgehog (Dhh), or Indian Hedgehog 
(Ihh)) to the Patched receptor, resulting in relief of the inhibitory 
effect on Smoothened (Smo) [17]. Smo through the Gli transcription 
family activates Hh target genes (self-renewal genes) such as B cell-
specific Moloney murine leukemia virus insertion site 1 (Bmi-1) and 
Cyclin D/E (Figure 1). Cyclopamine can stabilize Smo in its inactive 
condition, resulting in the inhibition of Hh pathway and blocking of 
LSCs’ self-renewal [6]. Hegde et al. tested cyclopamine in vitro and it 
completely inhibited LSC colony formation compared to control [18]. 
They also demonstrated that cyclopamine did not increase apoptosis, 
but the cells’ morphology changed on treatment [18].

There is evidence that the Wnt signaling pathway plays an 
important role in LSCs’ self-renewal because it can be activated by 
several oncogenic fusion proteins (e.g. RUNX1-RUNX1T1) [19]. 
Recent studies report the role of β-catenin in the survival of Imatinib-
resistant chronic myelogenous leukemia (CML)-LSCs in breakpoint 

cluster gene Abelson (Bcr-Abl)-induced CML [20]. Targeting of the 
Wnt signaling pathway can be achieved by scavenger proteins such as 
secreted Frizzled-related proteins (sFRP) and Wnt inhibitory factor 1 
(Wif-1), preventing Wnt from binding to its receptors (Figure 1). Two 
natural compounds that may have a role in disturbance of the T cell 
factor (TCF)/β-catenin interaction and inhibit the self-renewal capacity 
of LSCs have been identified, CGP049090 and PKF115-584 [6]; both 
inhibitors induced cell death in in vitro studies, while normal  HSCs  
were largely unaffected. These results support the role of disturbance of 
the TCF/β-catenin interaction and its therapeutic values in treatment 
of AML [21].

In contrast, the Notch signaling pathway is silenced in blast cells 
and also in AML LSCs. Notch silencing in AML is partially caused 
by increased levels of H3K27me3, a histone mark associated with 
transcriptional repression, on Notch target promoters (epigenetic 
silencing). Notch pathway reactivation via Notch-activating ligands or 
fusion molecules (Dll4-Fc) efficiently targets both human and mouse 
AML, leading to growth inhibition, differentiation, and cell apoptosis 
(Figure 1) [22].

Targeting LSCs’ survival pathways 
LSCs appear to rely on different survival pathways and transcription 

factors, described below.

Nuclear factor kappa B

NF-κB is a transcription factor that promotes cell growth and 
also down regulates apoptotic activity within the cell [23]. The high 
expression of NF-κB within LSCs might be used for selective LSC 
eradication that could be regulated by modulation of the NF-κB 
pathway [24].

Prevention of degradation of inhibitor of κB (IκB) by the 
proteasome inhibitor bortezomib enhances the anti-NF-κB effect [25]. 
Also, NF-κB could be inhibited in LSCs by parthenolide (PTL), leading 
to decreased engraftment of leukemic cells into NOD/SCID mice, but 
the poor water solubility of PTL remains a problem. Initial in vitro 
studies were done to compare the effects of PTL against AML versus 
normal specimens. After 18 hours in culture, the viability of AML 
CD34 cells was more than 10-fold less than normal CD34 controls. 
Another NF-κB inhibitor is the parthenolide derivative dimethyl-
amino-parthenolide (DMPAT), with similar activity as PTL and 
with better water solubility, resulting in high bioavailability of orally 
administrated DMPAT [26].

PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR pathway appears to have links to different 
transcription factors such as the FOXO family that regulates Reactive 
Oxygen Species (ROS), the Bcl-2 family (apoptosis regulators), and the 
Wnt/β-catenin pathway controlling the LSC self-renewal [27]. Several 
inhibitors were implicated in the PI3K/mTOR pathway inhibition 
such as temsirolimus and wortmannin and could be used with other 
agents to eradicate LSCs [27]. There are several in vitro  studies in 
which wortmannin was used to suppress the PI3K/Akt axis of human 
AML cell. As a result of the treatment, leukemic cells’ apoptosis and 
sensitivity to chemotherapeutic drugs increased, while the normal 
hematopoietic progenitors were less affected [28]. Blocking the PI3K/
Akt pathway might be a promising approach to treat AML, however 
the use of wortmannin derivative PX-866 is associated with increased 
risk of undesirable side effects (e.g. hyperglycemia) because it may 

Figure 1. LSC self-renewal mechanisms showing three pathways: Hedgehog, Wnt, and 
Notch
For the Hedgehog pathway, under normal processes Smo receives inhibitory signal from 
the cell surface receptor Patched. Binding of a ligand (Shh, Ihh, or Dhh) to Patched leads 
to release of Smo due to the inhibitory signal from Patched receptors, and through the 
Gli transcription factors family enhances the expression of several genes including 
Bmi-1 and Cyclin D/E. Cyclopamine can inhibit the Hedgehog pathway by fixing Smo 
in its inactive form. For the Wnt pathway, binding of Wnt to Frizzled receptor inhibits 
the multiprotein destruction complex (MDC). β-catenin accumulates and passes to the 
nucleus where it associates with other transcription factors such as TCF, Bcl-9, and Pygo, 
enhancing expression of several genes (e.g. Cyclin D, and CD44). Scavengers (sFRP, Wif1, 
and Cerberus) prevent binding of Wnt to its receptor and in turn inhibit the Wnt pathway. 
Two natural compounds, CGP049090 and PKF115-584, may have a role in disturbance of 
the TCF/β-catenin interaction and in turn inhibit the self-renewal capacity of LSCs. The 
Notch signaling pathway is inactive in blast cells and also in AML LSCs. Notch pathway 
reactivation using Notch-activating ligands, specific antibodies, small molecule agonists, 
or fusion molecules (Dll4-Fc) may be effective in the AML LSCs. Small, solid circles = 
activators, lightning bolts = inhibitors. 
Abbreviations: AML: Acute Myeloid Leukemia; β-cat: β-Catenin; Dhh: Desert Hedgehog; 
Hes: Transcription Factor Hes; Ihh: Indian Hedgehog; I.C. Domain: Intracellular Domain; 
LSC: Leukemia Stem Cell; MDC: Multiprotein Destruction Complex; Smo: Smoothened; 
Shh: Sonic Hedgehog; sFRP: secreted Frizzled-Related Proteins; TCF: T Cell Factor 
(transcription factor); Wif1: Wnt Inhibitory Factor 1.
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target other important enzymes such as lipid kinase [28].

Apoptosis inhibition through the Bcl-2 family

Apoptosis inhibition through the Bcl-2 family is another 
mechanism used by leukemia cells. This family consists of several 
members: Bcl-2 and Mcl-1 members are inhibitors for apoptosis, and 
Bax and Bad are promoters [29]. In AML, the Bcl-2 to Bax ratio is 
increased and is usually associated with poor prognosis. Several anti-
apoptotic Bcl-2 inhibitors now under clinical trials for AML include 
ABT-737, ABT-263, and obatoclaxmesylate [30]. ABT-737 has been 
shown to inhibit Bcl-2, Bcl-w and Bcl-XL, but not other anti-apoptotic 
proteins, especially Mcl-1, that make ABT-737 unable to affect many 
cell types [31]. Van Delft et al. demonstrated that Mcl-1 overexpression 
resulted in increased ABT-737 resistance, such that down regulation of 
Mcl-1 will lead to an increase in sensitivity to the drug [32].

ABT-263, which is structurally related to ABT-737, has shown 
strong cytotoxicity against different human tumor cell lines including 
hematological malignancies. Recent preclinical trials showed in vitro 
activity of ABT-263 against acute lymphoblastic leukemia’s (ALL) 
cell lines but with less activity against solid tumor cell lines. Similar to 
ABT-737, it has low affinity for Mcl-1. ABT-263 is currently in a phase 
I/II clinical trial [31].

Obatoclax has been shown to inhibit the pro-apoptotic/anti-
apoptotic proteins’ interaction and also increase the pro-apoptotic 
protein Bim. Obatoclax is currently in a clinical phase I/II trial [31]. A 
recent study demonstrated the synergism between obatoclax and ABT-
737 to induce apoptosis, such that obatoclax might have an important 
role in augmentation of the activity of chemotherapy or other apoptosis 
inhibitors [31].

SALL4

SALL4 is another transcription factor that appears to protect HSCs 
and LSCs by inhibiting different apoptotic pathways [33]. The effect of 
SALL4 is mediated mainly through the Bmi-1 gene. Several observations 
illustrate the role of SALL4 in leukemia including the reduced ability 
of leukemic cell lines with a defect in SALL4 to initiate leukemia in 
NOD/SCID mice [25]. Using SALL4 as a target to initiate apoptosis of 
LSCs is attractive, but the high risk of multi-organ involvement raises 
doubts about this strategy. Therefore, Bmi-1 targeting may be a better 
alternative to inhibit SALL4’s effect and down regulated cell growth 
[25]. Rizo et al. demonstrated that down regulation of Bmi-1 resulted 
in marked impairment in the proliferative capacity of CD34+ cells 
(decreased by more than 10-fold) [34].

Hepatic leukemic factor

Hepatic leukemic factor (HLF) appears to be involved in drug 
resistance and survival of LSCs [35]. Cantharidins (derived from 
Chinese conventional medicine) showed a good efficacy in inhibition 
of HLF and promoted leukemic cell apoptosis in vitro without notable 
effects on normal HSCs, but their activity in vivo is disappointing [25].

Farnesylation

Another strategy depends on inhibition of farnesylation by 
tipifarnib and lonafarnib, which are responsible for the post-
translational modification of several proteins implicated in LSC 
proliferation, especially RAS [36]. However, the clinical trial of 

farnesylation inhibitors did not improve survival or remission rates in 
comparison with conventional chemotherapies [25].

Aurora A kinases

A family of mitotic serine/threonine kinases that is essential for 
cytokinesis during cell division, Aurora A kinase (AurA), has been 
reported as an AML-LSC target [16]. The development of specific 
AurA inhibitors may be effective to reduce AML-LSCs [37]. An AurA 
inhibitor was tested against AML cell lines (NB4 and KG1) and also 
CD34+/CD38- populations containing LSCs, obtained from AML 
patients. AurA inhibitor was associated with increased apoptosis (more 
than 3-fold) [37]. Further clinical trials are needed to evaluate the effect 
of AurA inhibitors.

Phosphatase and tensin homologue

Deletion of phosphatase and tensin homologue (PTEN) in 19 
mice resulted in the development of myeloproliferative disorder in 17 
mice and progressed to leukemia. PTEN deletion was associated with 
increased cell cycle progression and impaired HSC replenishment. It 
was also noted that the role of the mammalian target of rapamycin 
(mTOR) can mediate the effects of PTEN mutations through the success 
of the mTOR inhibitor rapamycin to reverse the PTEN mutation effects 
[38]. Therefore, rapamycin seems to be a new approach for selective 
eradication of LSCs.

Activation of apoptosis-inducing receptors

The tumor necrosis factor (TNF) related receptor (TRAIL-R) 
family plays a key role in cell fate and survival. The most important 
members of the TRAIL-R family are TRAIL-R1 and TRAIL-R2 [39]. 
Binding of ligands to TRAIL-R1 or TRAIL-R2 activates and initiates 
different caspases, leading to cell apoptosis [39]. The high expression of 
both TRAIL-R1 and TRAIL-R2 on LSCs has been reported [40]. Recent 
studies demonstrated that normal cells appear to be more resistant to 
TRAIL-R ligation than malignant cells [6]. There have been several 
clinical trials to activate TRAIL-R1 and TRAIL-R2 on LSCs to induce 
selective LSC elimination using specific antibodies and recombinant 
preparations of soluble TRAIL (sTRAIL), but the results were variable 
and further clinical trials are needed to evaluate the effect of TRAIL 
activation [41]. Trebing et al. demonstrated that TRAIL fusion proteins 
with CD70 antibody, a typical member of the TNF that is present with 
high frequency in hematological malignancies, triggered cell apoptosis 
by about 10- to 100-fold [42].

Functional targets
ATP binding cassette transporter

The ATP binding cassette transporters (ABC) family consists of 
several members (e.g. multidrug resistance proteins (MRPs/ABCC) 
and P-glycoprotein (P-gp/ABCB1)) [43], with variable expression 
from one cell type to another. Stem cells express high levels of these 
transporters, which may play an important role in protection of stem 
cells against cytotoxic agents [23]. Verapamil, methylene blue MS-
209, and tariquidar are examples of ABC inhibitors. Use of the ABC 
inhibitors with other cytotoxic agents has shown promising effects 
because they caused marked accumulation of the cytotoxic agents 
within the malignant cells, resulting in enhanced tumor cell death 
[44]. Preclinical trials of verapamil and valspodar (first and second 
generation of ABC transport inhibitors) were not successful due to the 
non-specificity and the need of high concentrations to inhibit activity. 
On the other hand, phase I trials of third generation inhibitors 
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(e.g. tariquidar) revealed great effects, but the unexpected drug 
interactions, involvement of other drug transporters and variability in 
the expression of drugs’ transporters among individuals restricts the 
sensitivity of such agents in clinic [45]. Some researchers seek to target 
the regulators of ABC protein expression by targeting ABC transporter 
mRNA using siRNA [23].

Aldehyde dehydrogenase (ALDH)

ALDH is a cytosolic enzyme that has an important role in 
detoxification of alkylating drugs such as cyclophosphamide and the 
synthesis of retinoic acid [6]. The normal bone marrow consists of 
two populations: CD34+CD38-ALDH low and CD34+CD38- ALDH 
high. The CD34+CD38-ALDH high population consists of a higher 
proportion of long-term colony initiating cells and was capable of 
initiating normal hematopoiesis in a mouse model. In AML, additional 
populations with intermediate ALDH activity (CD34+CD38- ALDH 
int) could be detected with the ability to generate AML in a mouse 
model [46]. Other studies reported higher relapse rates in patients 
with an increased proportion of CD34+CD38-ALDH int [27]. ALDH 
inhibitors such as diethylaminobenzaldehyde and all-trans retinoic 
acid may be effective to sensitize AML-LSCs to chemotherapy, 
especially to cyclophosphamide [27]. An in vitro study was performed 
by incubating ALDH+ cells with BODIPY aminoacetaldehyde 
(in the presence of verapamil), which converted the BODIPY 
aminoacetaldehyde in cytoplasm into a fluorescent substance. In the 
presence of diethylaminobenzaldehyde, ALDH activity was decreased 
by more 90% with no fluorescent subpopulation detected [47].

Epigenetic reprograming of LSCs

DNA (cytosine-5)-methyltransferase 3A (DNMT3A)  is 
an  enzyme  that is responsible for the DNA methylation process 
by transfer of methyl groups to specific CpG sequences present in 
high concentrations upstream of genes. Increased methylation of 
these CpG islands is often associated with reduced expression of the 
downstream gene [48]. Human DNMTA3 enzyme is encoded by the 
DNMT3A gene, which is represented as a target of different mutations. 
DNA hypermethylation, especially CpG islands in the promoters 
of tumor-suppressor genes, has been hypothesized to be involved in 
the pathogenesis of different malignant tumors [48]. Recent studies 
reported an association between DNMT3A gene mutations and AML, 
especially at amino acid R88. These mutations were highly linked 
to patients with an intermediate-risk cytogenetic profile [8]. Many 
trials have been designed to inhibit DNA methyltransferase, but 
the response rate has not been satisfactory [49]. Recent trials with a 
specific microRNA to target DNMT3A mRNA were associated with 
improvement in the response rates [50]. Garzon et al. demonstrated 
that infection of AML cell line, Kasumi-1, with  miR-29b  lentivirus 
decreased the endogenous mRNA levels of DNMT3A by about 6.1 fold 
within 24 hours [51].

Conclusions
The rising interest in studying LSCs’ biology and signal transduction 

has led to the development of new powerful tools for targeting acute 
myeloid leukemia. Until now data from in vivo and in vitro studies has 
led to development of agents directed against specific components in 
the survival pathways and epigenetic reprograming, but still the most 
important question is: does inhibition of the survival pathways and 
transcription factors also affect normal cells? 

In vitro findings demonstrate that inhibitors commonly kill 

leukemic cells that show significant increase in the intrinsic regulators 
(e.g. increasedPI3K/Akt activity). It may be related to the increased 
dependence of the LSCs on the intrinsic regulators promoting 
cellular survival and resistance to the different forms of stress (e.g. 
chemotherapy). Also, LSCs might be more sensitive to those inhibitors 
than normal cells because LSCs grow in microenvironments that are 
deprived of nutrients, which lead to up regulation of the signaling 
pathways during the progression of the disease for their survival. Thus, 
even a partial inhibition of these intrinsic regulators might be sufficient 
to affect the LSCs’ survival and proliferation without damaging HSCs. 

To date there have been many trials with different levels of success 
because of the difference in expression of each target from one patient 
to another. Therefore, development of personalized therapies may be a 
promising way to design an ideal strategy for each patient.
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