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Targeted radiotherapy of neuroblastoma: Future directions
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Neuroblastoma is a malignancy predominantly of infancy.  It 
originates most commonly in the adrenal gland and affects a hundred 
individuals per year in the UK.  Half of neuroblastomas are highly 
aggressive, disseminated throughout the body of the patient and 
characterised by unresponsiveness to therapy or early relapse if 
remission is achieved.  High-risk neuroblastoma is responsible for 12% 
of paediatric cancer fatalities and new treatments are urgently needed [1].

Ninety percent of neuroblastoma tumours express the noradrenaline 
transporter (NAT).  These can be treated with targeted radiotherapy 
using an iodine-131-radiolabelled drug, meta-iodobenzylguanidine 
(131I-MIBG), which is structurally similar to noradrenaline.  131I-MIBG 
has produced long-term remission and palliation in patients with 
resistant disease [2].  However, some neuroblastoma tumours cease 
expression of NAT, engendering resistance to 131I-MIBG [2].  This 
observation prompted the diagnostic and therapeutic application 
of an alternative radiopharmaceutical - radiolabelled octreotate – 
which targets somatostatin receptors (SSTRs), expressed on human 
neuroblastoma cells [3-5].

Octreotate linked to the β-particle-emitting lutetium-177 (177Lu-
DOTATATE) binds with high affinity to SSTR2.  The safe and successful 
treatment of children with neuroblastoma using 177Lu-DOTATATE 
was recently reported [6,7].

The administration of both 131I-MIBG and 177Lu-DOTATATE is 
expected to enhance therapeutic efficacy.  Significantly, as the main 
unfavourable effect of 131I-MIBG therapy is myelosuppression whereas 
that of 177Lu-DOTATATE therapy is renal toxicity, the combined 
treatment with 131I-MIBG and 177Lu-DOTATATE is not expected to 
intensify adverse effects.  In order for a clinical study of the combination 
of radiopharmaceuticals to proceed, the optimal sequence and timing of 
administration must be determined.  Previous studies indicate that these 
factors have a profound influence on the efficacy of radionuclide therapy [8].

Following a study of patients with neuroblastoma, non-
concordance between 123I-MIBG- and 177Lu-DOTATATE-derived 
images was reported [6], indicating variation between tumors with 
respect to capacity for radiopharmaceutical uptake.  Significantly, it 
has been shown that the cellular uptake of both radiopharmaceuticals 
is enhanced by DNA-damaging agents, including ionizing radiation 
[9,10]. If such potentiation of receptor expression pertains also in vivo, 
the sequencing of administration of radiopharmaceuticals and the 
interval between injections could have a substantial influence on efficacy.

Radionuclide therapy delivers ionizing radiation at very low 
dose rate (LDR) (≤ 2 cGy/min), which decreases with time.  The 

outcome of fractionated administration of 131I-MIBG and 177Lu-
DOTATATE cannot be predicted because it depends on the properties 
of the radionuclide and of the tumor [8,11-16] (Table 1).  Therefore, 
experimental testing is required to determine the optimal scheduling 
of delivery of these two radiopharmaceuticals.

Two opposing outcomes of sequential administration of 
radiopharmaceutical are envisaged: (i) prior exposure of tumour cells to 
one radiopharmaceutical could enhance the expression of the target of 
the subsequently applied radiopharmaceutical, engendering a positive 
therapeutic effect; and (ii) a priming dose of radiopharmaceutical 
may stimulate radioprotective (adaptive) responses in surviving 
cells thereby reducing the effectiveness of the subsequently delivered 
radiopharmaceutical.  The establishment of the optimal schedule of 
delivery of radiopharmaceuticals will minimise the capacity of tumours, 
which do not succumb to initial radiopharmaceutical treatment, to 
develop resistance to subsequently administered radiotherapy.

Efforts to improve the therapeutic efficacy of targeted radiotherapy 
by combination with radiosensitisers are now being implemented.  
Furthermore, the reduction of resistance to targeted radiotherapy 
by means of combinations of radiopharmaceuticals which bind to 
alternative targets is likely to translate into the improvement of the 
management of patients with high risk neuroblastoma.
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Factors that enhance cell kill Factors that reduce cell kill 

Radiation-induced biological bystander 
effect

Non-uniformity of tumour uptake of 
radiopharmaceuticals due to heterogeneity 
of target expression

Hypersensitivity to low-dose radiation Increased radioresistance at low radiation 
dose

Radiation cross-fire Adaptive response
Redistribution of cells to radiosensitive 
phases of the cell cycle and reoxygenation

Sustained repair of DNA damage during 
treatment

Table 1. Factors influencing the response to radionuclide therapy delivered at low dose 
and low dose rate.
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