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Glycolysis is a promising target for encapsulation nano-
therapeutic molecules against cancer cells
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The well understanding of cancer metabolism and signaling 
pathways, has allowed for development of more effective therapies. For 
instance, the increase of glucose consumption in many types of cancer 
cells is regulated by overexpression of type II hexokinase (HKII). Indeed, 
tumor cells show active glycolysis even under aerobic conditions, 
which is known as the Warburg effect [1]. This unique pathway endows 
cancer cells with selective advantages like enhanced proliferation, 
invasion, and metastasis [2]. The glycolysis furthermore confers 
selective advantage to cancer cells by supporting uninterrupted growth. 
For example, a higher glycolytic rate in tumor cells has been shown 
to promote resistance to chemotherapeutics. In the cervical cancer cell 
line, HeLa for example, the enzyme pyruvate dehydrogenase kinase 
(PDK) isoforms PDK1 and PDK3 have been demonstrated to provide 
resistance to chemotherapeutics [3]. Hexokinase is a key glycolytic 
enzyme that catalyzes the first step in the glycolytic pathway and helps 
to exhibit the Warburg effect. This enzyme transfers a phosphate group 
from ATP to glucose to form glucose-6-phosphate.  Moreover, HKII 
interacts with the outer membrane protein voltage dependent anion 
channel (VDAC). It blocks mitochondrial inter membrane space 
proteins release and prevents activation of the apoptotic process [4]. 
Whereas , HKII prevents association of pro-apoptotic BcL-2 family 
member proteins (Bad, Bak, Bax) with the mitochondrial permeability 
transition pore (mtPTP) complex; pro-apoptotic factor association is 
necessary for mitochondrial permeability transition and cytochrome 
c release (the apoptotic cascade) [5]. This observation has led to the 
development of therapeutic strategies such as use of small molecules 
for inhibition of glycolytic activity in cancer cells [6].  In this case, 
lonidamine, 3-bromopyruvate (3-BrPA) and 3-BrOP (3-bromo-2-
oxopropionate-1 -propyl ester) [7,8], are used as HK-II inhibitors in 
the early stages of treatment, can effectively inhibit glycolysis. The 
crucial problem for using them in clinical application is related to their 
interaction with normal cells, especially erythrocytes [9]. Thus, there 
is an urgent need to encapsulate them inside smart carriers having 
efficient strategies from size, shape, and targeted for cancer cells [10]. 
In our previous report, 3BrPA attached Poly(allylamine) hydrochloride 
was entrapped inside CaCO3 rods during their fabrication. [11]. 
However, non-specific, passive, targeting, carriers can result in uptake 
by healthy cells. This can be minimized by the active targeting of the 
therapy, In our recent work, targeted hybrid lipid polymer as alternate 

assembly structure instead of liposomes is fabricated. Their positive 
attributes make them a promising drug delivery vehicle for further in 
vivo evaluation. Hybrid polymeric protein carriers (HPPNCs) were 
assembled by using chitosan, oleic acid and BSA-FA to form core shell 
structure [12].
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