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Increasing body of evidence ascribes tumorigenesis to the 
emergence of cancer stem cells (CSCs). The two main theories predicting 
the origin of CSCs are either transformation of adult stem cells, or de-
differentiation of mature cells that is accompanied by the induction 
of the epithelial to mesenchymal transition (EMT) program [1]. Yet, 
both are associated with the accumulation of genetic and epigenetic 
aberrations that underlies cell plasticity [2]. Since accumulating 
data link mutations in the tumor-suppressor p53 with both CSCs 
formation and cancer-associated EMT, it is tempting to hypothesize 
that mutant p53 might facilitate CSCs formation by inducing EMT and 
cell plasticity. Here, we will evaluate the latter hypothesis by analyzing 
recent publications, and supporting it by our new data pertaining 
prostate cancer.

EMT- induced cell plasticity is associated with CSCs 
features

A recent accepted concept explaining cancer development 
and relapse is the hierarchical model, which predicts that a small 
subset of cells within tumors has the ability to both self-renew and 
to differentiate in various cell types, thus maintaining the ongoing 
heterogeneous neoplasm [3].  EMT that was first described as critical 
process in embryogenesis, was shown to be activated in various tumor 
cells by the EMT- transcription factors, mainly of the SLUG/SNAIL, 
TWIST and ZEB families. This activation was suggested to yield cells 
migration and metastasis. Recent studies, however, ascribe EMT, also 
to enhanced stemness capacity; accordingly, EMT was suggested to 
be a critical process in mediating CSC phenotype [1,4]. This is mainly 
due to the cellular changes mediated by the EMT process that is 
known to induce cancer cells plasticity [5]. Indeed, EMT was found 
significantly associated with CSCs. For example, in a mouse model for 
skin cancer, tumor cells that underwent EMT (Epcam− cells) contained 
higher frequency of tumor propagating cells than that observed in the 
epithelial cells (Epcam+ cells), implying on higher stemness capacity 
[6]. Moreover, it was shown that induction of EMT in breast tumor-
derived cell lines is associated with a higher capacity to generate 
mamospheres with frequent CSCs markers, thus supporting the 
notion that the two are interconnected [7-10]. Several experimental 
settings have shown that expression of the EMT transcription 
factors is associated with CSCs. For example, Snail was suggested to 
be responsible for the transition from asymmetrical to symmetrical 
division of colorectal CSCs by maintaining high Wnt activity, and thus 
propagating the CSCs pool [11]. Ectopic expression of TWIST1 in 
esophageal squamous cell carcinoma caused significant upregulation of 
OCT4, a main self-renewal mediating factor [12]. Other cancer models 
for Leukemia [13] and ovarian cancer [14] associated Snail and Twist 
expression to the CSCs marker CD44. Finally, in pancreatic cancer 

mouse model, where K-Ras and p53 are mutated (KPC model), Zeb1 
was found crucial for EMT, tumorigenic capacity as well as stemness 
phenotype [15]. Altogether, these evidence strongly link CSCs to EMT, 
and further suggest that EMT induction may lead to cancer stemness. 

Mutant p53 mediates EMT
In a step-wise prostate transformation model we have previously 

shown that mutant p53 facilitates the expression of EMT related 
genes, including Twist1 induction and E-cadherin repression. This was 
accompanied with higher invasion capabilities and morphologically 
disrupted spheroids [16]. While Wang Z et al. showed that silencing 
wild-type p53 lead to EMT, migration and metastasis of hepatocellular 
carcinoma (HCC) cells [17], we further suggest a gain of function 
activities of mutant p53, that enhances this phenotype to higher 
extent than p53 inactivation alone [16]. The repression of E-cadherin 
expression by mutant p53 was also demonstrated in human colon 
carcinoma cell line model, HCT116. However, in this model, p53 
temperature sensitive mutant p53-A143 did not show enhanced 
invasion [18]. The differences in the observed phenotype can stem from 
the p53 mutation type or cell types tested. In esophageal cells model, it 
was suggested that mutant p53R175H cooperates with epidermal growth 
factor receptor (EGFR) to enhance EMT phenotype upon treatment 
with EMT inducer, TGFβ. This was demonstrated by lower levels of 
E-cadherin and higher levels of N-cadherin, Zeb1/2 and Snail, and was 
associated with inactivation of EGFR-induced senescence, suggesting 
additional role for mutant p53 and EMT in senescence checkpoint 
during tumorigenesis [19]. More recently, mutant p53 expressing 
WAP-T transgenic mice, showed higher expression of an EMT gene 
signature which was associated with higher tumorigenic grading, 
associated with enhanced vascularization and metastatic potential 
[20]. Several studies aimed at understanding the molecular mechanism 
underlying mutant p53-dependent induction of EMT, suggest that 
mutant p53 gain of function activities promote EMT by modulating 
the expression of the key EMT transcription factors. For example, our 
previous study attributed the induction in Twist1 levels to deregulation 
of epigenetic mechanisms by mutant p53. Inhibition of BMI-1 protein 
by mutant p53 led to the reduction in H3K27me3 on Twist1 promoter, 
and activation of Twist1 expression [16]. In addition, in colorectal 
cancer cell lines, the induced expression of the EMT transcription 



Solomon H (2018) Mutant p53 hinges between epithelial-mesenchymal transition and cancer stem cells

Integr Cancer Sci Therap, 2018      doi: 10.15761/ICST.1000278  Volume 5(3): 2-4

factors- Snail and Slug was attributed to the mutant p53-dependent 
transcriptional upregulation of EFNB2 in response to DNA damage 
[21]. Other study suggested that in endometrial cancer, mutant p53 
represses the expression of miR-130b, a negative regulator of ZEB1, 
and by that mediates ZEB1 elevation, leading to EMT phenotype [22]. 

Mutant p53 expression is correlated with CSCs features 
It was recently claimed that tissues containing an increased 

frequency of highly dividing stem cells permit the increased incidence 
of mutations, and thus are prone to develop tumors [23,24]. As  p53 
serves as an important guardian of the genome, it is expected that it 
will play a major role in ensuring the quality and stability of stem cells 
genome [25]. Thus, it is not surprising that mutations in p53 may in 
turn lead to the formation of aberrant stem cells, referred as CSCs. 
Indeed, mutant p53 knock-in mice models have shown that bone 
marrow-derived hematopoietic and mesenchymal stem cells (MSCs) 
populations exhibit an augmented frequency of CSCs that are capable 
of inducing tumors in vivo [26,27]. This notion is further substantiated 
by our previous observation that mutant p53 facilitates the in vitro 
reprograming of mouse embryonic fibroblast (MEFs) towards the 
generation of induced pluripotent stem cells (iPSC). This facilitated 
process lead to the generation of malignant iPSC that in that respect 
can be regarded as CSCs [28]. These data emphasize the role of mutant 
p53 in mediating harmful de-differentiation, and by that accelerating 
cancer stem cells malignancy. Accordingly, recent evidence suggest that 
in various cancer types the expression of mutant p53 is correlated with 
CSCs features. For example, p53 protein derived of a deletion mutation 
that disrupts p53 DNA binding domain, was found accumulated in 
multipotent stem cells of brain sub-ventricular zone and in transit-
amplifying progenitors, which are suggested to be the cellular origin 
of glioma that accounts for the development of glioblastoma [29]. In 
other cancer models mutant p53 was associated with enhanced CSCs 
features. For example, mutant p53R248W/P72R in human osteosarcoma cells 
promoted CSCs properties such as formation of larger sarco-spheres 
and enhanced expression of stemness genes (e.g. CD133, ABCG2, 
Nanog) [30]. Accordingly, in glial and breast-derived cancer cells, 
mutant p53 expression was found correlated with enhanced spheres 

formation and induction of the stemness markers CD133 and CD44 
[31]. Additionally, we and others showed that colorectal cancer cells 
expressing mutant p53 are associated with larger sub-population of cells 
expressing CSCs markers and drug resistance [32, 33]. Interestingly, 
recently, we observed that mutant p53 expressing MSCs-derived highly 
aggressive tumor cells, express an embryonic gene signature that may 
testify that such CSCs underwent re-programing [27]. Altogether, 
these data further support the role for mutant p53 gain of function in 
facilitating the oncogenic characteristics of CSCs.

Mutant p53 plays a role in facilitating CSCs features of 
prostate tumor cells in association with inducing the 
EMT process

When focusing on better understanding mutant p53 gain of function 
activities in promoting cancer development, we recently suggested 
that mutant p53 is associated with higher expression of CSCs markers 
in colorectal cancer [33]. Moreover, in a prostate transformation 
model, epithelial prostate cells were immortalized (EP156T) and 
introduced with either mutant p53R175H or inactivation of p53 by the 
dominant negative p53 peptide GSE56, to study p53 role in prostate 
carcinogenesis. Results obtained indicated that mutant p53 induced 
EMT in a gain of function manner [16]. As induction of the EMT 
program was suggested to be associated with CSCs, we hypothesized 
that mutant p53 augmented the oncogenic CSCs features through 
EMT. Analysis of the expression of CD44high/CD24low CSCs markers 
[34] in EP156T prostate indicated that in mutant p53R175H expressing 
cells the CD44high/CD24 low sub-population is larger compared with 
wild-type p53 and GSE56 expressing cells. This observation was further 
corroborated in additional prostate cancer cell line system, DU145, 
which endogenously expresses mutant p53P223L,V274F [16], confirming 
the conclusion that prostate cancer cell-lines, expressing mutant p53, 
harbor larger CD44high/CD24 low sub-population (Figure 1). These 
observations suggest that mutant p53 gain of function is associated 
with an increased tumorigenic CSCs sub-population. In accordance 
with our observation that EP156T and DU145 cells expressing mutant 
p53 are associated with higher EMT features [16], we found that while 
the CSCs sub-population was enriched for EMT transcription factors 

Figure 1. Mutant p53 expressing cells contain larger CD44high/CD24low sub-population. The EP156T (A) and the DU145 (B) cells were established and maintained as described 
previously [16]. Briefly, epithelial prostate cells were immortalized (EP156T) and introduced with either mutant p53R175H or inactivation of p53 by the dominant negative p53 peptide GSE56, 
or control vector. The DU145 cell line, endogenously expressing mutant p53P223L,V274F, were stably introduced with shRNA against p53 to knock-down mutant p53P223L,V274F expression. 
The established cells were immunostained with anti-CD44-APC conjugated (eBioscience) and anti-CD24-PE conjugated (BD Biosience) antibodies followed by evaluation of the size of 
CD44high/CD24low sub-population by FACS analysis. FACS procedure was performed as described previously [29]. Graph presenting an average of three experiments.
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Twist and SLUG, the E-Cadherin expression was decreased (Figure 
2), thus inferring that the cellular sub-population that gained CSCs 
features was most likely dictated by EMT. 

As these observations are mutant p53 dependent, it is tempting to 
speculate that mutant p53 mediates CSCs features of cancer cells, via 
induction of EMT program. This hypothesis is supported by a recently 
published paper suggesting that mutant p53 facilitates CSCs features of 
glioblastoma and breast cancer cells by activating YAP/TAZ signaling 
[31] that was already proposed as regulator of EMT process [35]. Once 
established, this important hinge between EMT and CSCs formation 
in a mutant p53 dependent manner, may be regarded as a milestone in 
the understanding of the molecular events underlying the augmented 
oncogenic aggressiveness of CSCs. 
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