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Abstract
Non-selective cytotoxic therapy of cancer is effective, acting harmfully for a host. Legal deep lymphocytopenia at conventional cytotoxic therapy, high risk of new 
malignancies after it, spreading of malignant cells through favorite lymph nodes, a restriction of immunocytes activity inside tumor at anti-angiogenic treatment does 
not feet the idea of host immune defense against spontaneous cancer. To understand these theoretical inconsistencies we discussed the development of a tumor and 
its microvessels, gradual exhaustion of hematopoietic stem cell number in blood and arising of cancer cachexia, ratio of infectious morbidity and cancer mortality 
in their interrelation, using an experimental, clinical data and population statistics. We concluded, that mentioned above and other principal discrepancies would 
become regularities, if the cells renewing in both malignant and normal tissues were taken as a result of the recently discovered morphogenesis activity of circulating 
mononuclear cells, originated from the bone marrow and presented by tissue’s committed stem cells and some subsets of morpho-angiogenic lymphocytes.  
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Introduction
Invariable difficulties in rejection of a tumor and retention of an 

allograft exist in the theoretical sphere of cellular immunity, where 
these two tasks are united. The strategy of immunotherapy demands to 
reduce of regulatory T cells-“suppressors’’ in cases of cancer, but extend 
them in case of allograft [1]. It is not clear, why such opposite immune 
reactions expected, if both malignant tissue and allograft, in the case 
being non-self, can provoke a uniform anti-allogeneic response. It 
is not clear also, why the practice of therapy both of cases leads to a 
uniform lymphocytopenia. Similarly, why the age-related decline in 
immunity associates with decreased survival of recipients of the liver 
allograft [2], but follows by improvement of mortality, incidence, 
and prevalence of malignancy among old cancer patients [3]. The 
“favorite” paths of the tumor cells dissemination, namely blood, and 
lymph nodes, are the very location of supposed “protective” cells. The 
modern anti-angiogenic therapy [4,5] prevents circulating lymphocytes 
interaction with tumor cells. The idea of non-selective cytotoxic therapy 
as the stimulator of immune defense against tumor dominates despite 
the main antineoplastic agents are carcinogenic, toxic, mutagenic, 
clastogenic, teratogenic [6] and treated cancer survivors have increasing 
risk of developing new malignancies by 14% compared with the general 
population [7]. The idea for tumor deception of immune protection is 
popular, in spite of the lowest limit of lymphocytopenia permitted at 
cancer therapy [8] and this level is comparable with such for survivors 
after nuclear bombing [9].

Alternatively, multi-annual practice [8] assumes that 
lymphocytopenia, induced by anti-cancer therapy, relates somehow to 
a positive result. Some scientists concluded earlier that mononuclear 
cells have the global morphogenesis function because they transfer 
regenerative information to purpose-oriented normal and malignant 
tissues on the distributive base [10-19]. However, overly pedantic belief 
towards the existence of the anti-neoplastic immunity did not cause 
comprehensive public discussion of the idea of spontaneous tumors 

belonging to tissues, which do not provoke any protective reactions of 
the host [20-23]. 

At present, the new facts of involvement of hematopoietic stem cells 
into tissues regeneration challenge again the traditional interpretation 
of lymphocytopenia, induced by cancer therapy, as annoying adverse 
effect or side effect. Its role continues to be far from well-defined and 
demands the reconsideration. We attempt to fill this gap using data 
for morphogenesis properties of primitive cells of the hematopoietic 
system, which were not known 20-30 years ago and should not be 
ignored further in palliative treatment of cancer. The experimental and 
clinical data, including population statistics for cancer patient’s vitality, 
will be considered as the most reliable criterion to prove the practical 
significance of morphogenesis function of circulating hematopoietic 
stem cells and lymphocytes. 

The following data illustrates the involvement of specific circulating 
mononuclear cells in the nutrient supply and development of both the 
normal and malignant tissues.

Haematopoiesis and tissues function
Haematopoiesis and normal tissues

Most of the primitive mononuclear cells in the bone marrow 
and blood of adults represented by markers CD133+CD34−, 
CD133+CD34+, CD133−CD34+, and marker CD133 is ancestral to 
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CD34. Strongly proliferating CD133+ cells are able to differentiate 
into cells with characteristics of mesoderm, endoderm and neuroderm 
layers: endothelial progenitor cells, neural progenitor-like cells, 
astrocytes, oligodendrocytes, cells of kidney proximal tubules, cells of 
lactiferous ducts of the mammary gland, cells of the prostate gland, 
skin, lung, intestine, hepatocyte-like cells and skeletal muscle-like cells, 
expressed primary tissue- associated proteins [13,24]. The primitive 
cells of bone marrow migrate through the blood into different tissues 
and organs, especially after their injury [25]. The many examples of 
enhancing nonmalignant tissue regeneration via primitive bone marrow 
cells stimulation or their injection into the organism [26-28] confirm 
the idea, that bone marrow is a source of circulating tissue-committed 
morphogenic stem cells [13,24]. The vascular endothelium is renewed 
with the help of circulating СD133+ progenitor cells of bone marrow 
origin [29]. Even if primitive bone marrow cells do not transdifferentiate, 
as some suggest, but only fuse with target host cells or excrete of some 
cytokines and nutrients [30] they thus support the regeneration of 
target tissues. A steady-state of cell proliferation in different tissues 
of the body is supposed to be, maintained by T-lymphocytes too [31]. 
Most early memory lymphocytes, as well as mononuclear stem and 
progenitor cells penetrate through capillary walls into the interstitium 
of non-lymphoid tissues like the skin, muscle, liver, small and large 
intestine and the central nervous system to exert most of their 
protective and homeostatic activities under a noninflammatory steady-
state conditions [32]. They sacrifice themselves in support of the lives 
of the surrounding cells. The TdT+ prolymphocytes, γδ-T cells (CD4−
CD8−) [33] and СD3+CD31+CXCR4+ angiogenic T-lymphocytes 
[34] participate directly in tissue repair through the production of 
the growth factors, nutrients, and acceleration of the processes of 
angiogenesis. All these cells seem a trophocytes, feeding lymphocytes, 
rather than immunocytes, according to Fidler's prediction [35].

Spontaneous cancer is likely self-tissue and rather feds by the 
host

A candidate for a feeding system for cancer is hematopoiesis, which 
supports the viability of an organism as a whole by the mechanism 
more universal, than immunity [23]. The well-studied phenomenon of 
total aplasia of the thymus in the middle age shows the applicability 
of morphogenesis function of circulating cells to cancer supply. The 
event of thymus aplasia is accompanied by the dislocation of the Т-cell 
production from the gland to the bone marrow, by the temporary 
decrease in the number of immature CD4+CD62L+, CD8+CD 122+ 
lymphocytes in the blood [36,37] and by the temporary retardation of 
age-specific reduction of length of lymphocytes’ telomeres [38]. The 
expected in this connection   maximum of all chronic non-malignant 
illnesses at middle age confirmed for population of eight countries of 
Northern Europe [39]. The maximum of the non-malignant morbidity 
rate is registered at middle age for a restricted group (n=14.448) of 
Chernobyl’s clean-up workers too [36]. Moreover,  a relative risk of 
complications of influenza (such as hospitalizations and/or deaths) 
increased from age 20 to age 49, according to  natural thymus functions 
involution,  and then slowly declines again to age 60-69, as is shown 
for 43,545 adults populated Ontario state and aged ≥20  [40]. To the 
contrary, the lowest rates of death and the highest 3-10 year survival of 
adult cancer patients correspond to the middle age region of around 
50 years according to SEER database (Surveillance, Epidemiology, and 
End Results; National Cancer Institute, USA) [41-43].  The described 
infectious/ malignant age relation is not explainable by intensifying of 
cancer immunity, as raise of infectious morbidity contradicts to this. 
In contrast, a universal ability of primitive cells in blood to support 

the cellular renewal in many tissues of the organism is quite acceptable 
for the explanation of the mentioned relation. The temporary shortage 
of tissue renewal may reduce both tumor aggressiveness and a non- 
malignant somatic resistance toward infection. Thus, well-established 
morphogenesis properties of circulating cells can be combined with 
real pathogenic processes, explaining some principal discrepancies at 
the level of populations. 

Blood supply is vital for tumor development but not its 
regression 

The rate of cancer progression depends obviously on microvessels 
density of the tumor tissue. The local regrowth a tumor after 
temporary arrest of its mitotic activity starts from the peripheral, 
most vascularized zones only, but not from central hypoxic ones with 
a deficit of immunocytes in them. The hypoxic conditions provoke the 
massive emigration of malignant cells to the new, more vascularized 
areas in the organism, provide the start of metastases and paralyze the 
effectiveness of chemotherapy [44]. The metastases appear only during 
the slow (quasi-linear) phase of the primary tumor growth, which 
replaces the previous fast (logarithmic) phase with highest microvessels 
density [45]. This sequence of events confirmed by a lack of hypoxia 
marker MCT4 expression in tumors of breast cancer patients with the 
high 10-year survival rate (mostly local development) and the high 
level of marker expression at the low survival rates (early spreading) 
[46]. Therefore, sufficient interaction of circulating blood with cancer 
cells promotes their local development and vice versa. Thus, a key to a 
local tumor proliferation is a feeding function of blood vessels even if 
they deliver supposed “protective” cells. The development of modern 
antiangiogenic therapy [4] supports this priority of blood supply for 
local growth of malignant tissue. In parallel, the CD133 hematopoietic 
stem cells are a universal angiogenic agent in non-malignant tissues [47]. 

Hematopoiesis and tumor tissues

There are no doubts today that similarity in collaboration between 
morphogenesis cells of the hematopoietic system and malignant tissues 
exists. СD133-positive cells found in the carcinomas of the liver, lung, 
colon, skin, prostate, nervous and muscular tissues are called as cancer 
stem cells (CSC) [48]. Nevertheless, cancer can be developed from 
CD133 - negative cells also [49]. Moreover, misleading intercellular 
transfer of a CD133 marker into a tumor cell is possible due to simple 
cellular fusion [50]. CD34+ stem cells migrate from the bone marrow 
into tumors of the lung, stomach, prostate, liver, and skin too. The 
increasing number of circulating primitive CD133+cells [51], as well 
as CD34 cells and young lymphocytes, is associated with a failing 
prognosis and survival of patients with cancer of the lung, ovary, colon, 
breast [35,52]. Thus, migration of morphogenesis cells or trophocytes 
into a tumor can support viability of malignant tissue via reutilization of 
debris [53,54-56], fusion with them [50,57], microvessels development 
[14,17,58,59].

As early as last century Gutman M. with coauthors stated, that 
therapeutic myelosuppression may result at least in inhibition of host 
cell-induced tumor angiogenesis, which is not an immune process. 

The sectional case of updating vascular endothelium by CD133+ 
endothelial precursors and angiogenic T lymphocytes (СD3+, CD31+, 
and CXCR4+) may be at least a quite acceptable example of such a 
morphogenesis mechanism. Angiogenesis of tumor, being a principal 
cause of its progression and more intensive than that in a histologically 
identical normal tissue, is the main target of antiangiogenic therapy [4]. 
The rate of capillary networks formation and local growth of tumors 
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correlate directly with both CD133+ cells expression [14] and the 
expression of vascular endothelial growth factor C [60], which originates 
predominantly from hematopoietic stem cells and lymphocytes 
according Wartiovarra U. with colleagues [61]. The rise in the dead but 
not in viable CD45−CD31−CD146+ T-positive endothelial precursors 
in the tumor presence showed a highly significant, positive correlation 
with antiangiogenic therapy response and with patient benefits [62]. 

Depletion of so-called immune regulatory T cells results in growth 
delay and transient regression of experimental tumors [63]. It is 
remarkable that the number of typical CD4+CD25+ immune regulatory 
T-cells positively correlates with the number of CD133+CD34+ early 
endothelial progenitor cells [64]. Moreover, the CD25 is an early T-cell 
surface antigen, which coexists with TdT- antigen on young T cells 
in Pro-T2 / Rre-T1 stages of maturation [65]. The other regulatory 
T-cells presented by transitional stages of differentiation [66] depend 
quantitatively from a regenerative capacity of stem cells [67]. Some of 
them (double -negative CD3+CD4−CD8−) can be TdT-positive too 
[65], others have signs of incomplete maturity (CD62L) or signs of 
activated CD34+ hematopoietic progenitors (CXCR3, CD122) [24]. 
Thus, the family of immune “regulatory “cells can be identified not only 
as suppressors of tumor immunity but as morphogenesis providers 
supporting the tumor growth. 

In both cases, the strategy of therapy demands their elimination. 
Hence, there is an alternative mechanism for indirect tumor growth 
control, which based on inhibition of uniform for both non-
malignant and malignant tissues physiological feeding system 
lymphocytopoiesis.  

Moderate mielosuppression inhibits infectious 
immunity and cancer activity, as thymus involution 
and aging do
Moderate mielosuppression provide indirect control of 
tumor growth

Permitted inhibition of lymphopoiesis during conventional 
cytotoxic therapy [8] is a puzzle of anti-cancer immunity. The matter is 
that a therapy is only effective, if the poiesis is possible to produce enough 
lymphocytes to keep their level in blood near to physiological range 
and at low neutrophil / lymphocyte ratio (NLR). Such abnormalities 
like high NLR or lymphopenia before treatment are prognostically 
strong negative. The increasing NLR correlates with the severity of the 
clinical outcomes of many diseases [68,69]. Besides this, the number 
and function of hematopoietic stem cells (HSCs) causatively associates 
with overall organismal aging and longevity. The number of lymphoid 
progenitor cells dramatically decreases with age without malignancy 
[70,71], and the myeloid/lymphoid ratio of elderly HSC becomes 3-fold 
higher, then young one [72]. The well-known increase in malignancy by 
age reverses in the oldest cohort of patients. The incidence , mortality 
, and prevalence of a wide variety of cancer sites (n = 24) stop their 
increases at approximately 80 years of age, and then decline during the 
last 25 years to a natural age limit of 105 years [3]. During aging, the 
mean rank of death from infectious influenza and pneumonia (J09-J18) 
increases from 11 (at ages of 45 - 79 years) to 7 (at ages of 85 to ≥100 
years), manifesting as weakening of the immune system. However, the 
rank of death from malignant neoplasms (C00-C97) diminishes from 1 
to 3 [73], reflecting their trophic dependence on lymphopoiesis. These 
population-based results correlate with age-dependent impairment 
of angiogenesis and cancer tumor growth in humans [74,75], and are 

consistent with in-phase changes of the presence of the CD133 marker 
in blood and the process progress of malignancy [76]. We consider this 
natural relief of malignancy as a prototype of cancer therapy.

The other puzzle of non-selective cytotoxic chemotherapy of 
cancer is that it cannot damage the tumor cells lethally, as the high-
dose, local radiotherapy does. According to the level of lymphopenia 
during the conventional treatment, its radiation equivalent is not more, 
than 2 - 3 Gy, which cannot be lethal for a healthy man yet. Then, 
systemic chemotherapy is unable to kill tumor cells fundamentally, 
as it demands a few dozen Gy. [77-80]. Otherwise, nonselective 
chemotherapy would be fatal to the organism as a whole. Beside 
this, a myelosuppressive action of modern combined chemotherapy 
is not the rare, random event, because 85% of main drugs are 
myelosupressive agents [81] including modern ones [82]. Hence the 
mechanism of chemotherapy supposed to be an indirect one, causing 
temporary disturbances of cellular reproduction [83]. Lymphopoiesis 
is a vulnerable system in mammals, and lymphopoietic reproductive 
capacity is the most amortizable among other physiological tissue 
systems in the thymus, BM, gastrointestinal tract, breast, ovary, 
skin, lung, kidney, liver, adrenal, adipose tissue, muscle, bone, and 
brain, which could all be responsible for the natural involution of the 
organism [84]. Nevertheless, the partial recovery of lymphocytopoiesis 
can be possible even after the number of non-lethally injured stem cells 
in bone marrow drops to 3-5%. That is a reason for official permission 
the very deep lymphocytopenia induced by both local (selective) 
high dose radiotherapy and non-selective chemotherapy or whole-
body cancer therapy [8]. This similarity points to the importance of 
temporary cellular deficiency in the blood for getting a positive clinical 
result. Subtotal or total body irradiation with doses 5-40 times lower 
than local high dose radiotherapy provoke nevertheless temporary 
weakening of the tumor growth accompanied by lymphocytopenia 
and by results comparable with chemotherapy [35,85,86]. The fast 
reduction of tumor growth in parallel with therapeutic inhibition of 
the regenerative status of bone marrow assumed by us as the result 
of either depletion of trophic prolymphocytes in circulation or 
redistribution them into non-malignant tissues for recovery their cells 
injured sublethally. Namely, reparation of very numerous non-lethal 
damages in the majority of non-malignant cells is the main reason for 
attraction feeding cells from a tumor on a competitive base, just as it 
can occur at non-selective cytotoxic chemotherapy or whole- body 
radiotherapy [42].

Thus, the lymphocytopenia and reparable injuries in non-malignant 
tissues during cytotoxic cancer treatment become a logical argument 
for temporary treatments benefit instead to be the contradiction to 
the idea of therapeutic stimulation of anti-tumor immunity. In this 
context, the common consequences of palliative cancer therapy will 
discuss in next sections.

Hematopoiesis and probability of cancer therapy success

Probability of cancer therapy success in case of individual patient

There is a little of discussion about the limitation of the natural 
lymphopoietic capacity of the organism along with life, diseases, 
and treatment, apart from well-known prognostic deterioration at 
declining universal of neutrophils /lymphocytes ratio (N/LR) for many 
diseases [68].

Results of modern therapy of advanced cancer often become 
disappointing. According to general immunological point of view, 
a fatal development of tumor happens either because of deception 
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of defensive system by a surprisingly low number of malignant cells 
at the very beginning, or because of followed exhaustion of immune 
potency during the long struggle against the majority of abnormal 
cells. Then, an additional lymphocytopenia induced inevitably by 
conventional cytotoxic therapy looks harmful [8].  However, the 
same lymphocytopenia looks quite relevant if it to consider basing on 
morphogenic processes.

There are many reasons to divide the progress of cancer disease 
onto two phases at least [87]. Treatment usually continues until it 
has a chance to work but, in parallel, from cycle to cycle it exhausts 
regenerative capacity of lymphopoiesis, and induces serious 
complications, including incurability and a higher risk of death.  People 
who are much older and have exhausted lymphopoiesis may not be 
able to tolerate intense treatment, which brings no benefit, despite its 
intensification [88].

Therefore, at phase 1, the growth of tumor forces the hematopoiesis 
to supply additional feeding cells. It is true, the higher lymphocytosis 
before cytotoxic treatment and more evident lymphocytopenia are 
after, the less mortality is [71,78,79,89]. In this phase, cytotoxic therapy 
interferes tropic supply of cancer tissue by course to course but 
depletes concomitantly sensitive lymphocytopoiesis until its complete 
exhaustion. Once injured by therapy, lymphocytopoiesis recovers 
spontaneously between courses and provides again cell renewing in 
privileged cancer tissues, bringing relapse of disease. 

Eventually, over-production of stem cells in bone marrow, 
typical for phase 1, replaced by the weakened ( turbulent) stem cells 
genesis phase 2, which, in turn, finishes with irreversible total somatic 
exhaustion/cachexia incompatible with life [90].   The hematopoietic 
turbulence of CD34+cells content in blood at phase 2 is accompanied 
by synchronized fluctuations of monthly mortality of patients with 
advanced carcinomas during the final year of their life [71]. The found 
stem cells fluctuations in the blood are in agreement with replays of 
natural (asymmetric) type of bone marrow cells division on abnormal 
(symmetric) one in phase 2 [91]. 

As the turbulence provokes sooner or later a fatal deficit of the 
morphogenesis cells in somatic tissues, the chronic homeostatic 
imbalance between created and lost biomasses of the body has to 
follow. In spite of intensive treatment and unlimited food, cachexia 
affects nearly half of all cancer patients being the cause of one-third of 
cancer-specific deaths.

It is remarkable, that one of the attempts to cure cachexia 
bases on the replenish hematopoietic stem cells in blood as they 
significantly contribute to tissue regeneration [92]. Consequently, 
the deep pretreatment lymphocytopenia in phase 2 is a poor personal 
characteristic of the patient and predicts the failure of conventional 
cytotoxic therapy [93]. The unstable proliferation in bone marrow 
in phase 2 is a course of prognostic instabilities some signs related 
to hematopoiesis. Contrary to phase 1, CD133 positive expression 
in advanced cholangiocarcinoma predicts a surprisingly favorable 
outcome of patients (14 months median survival), while negative CD133 
expression correlates with poor prognosis (4 months median survival) 
[94].   This inversion reflects the general shortage of morphogenesis 
cells in the blood and tissues of terminal patients at the end of life with 
increased risk of death from common somatic frailty.

It is important to note, that this prognostic inversion compromises 
malignant origin of CD133+ cells called as cancer SC. Similarly, the 
preliminary exhausting of hematopoiesis by large field and high dose 

radiotherapy inverts expected mobilization of CD34+ host progenitor 
cells by G-CSF's injection to super-exhaustion the bone marrow 
reproductive capacity, and increases risk of death, chiefly because of 
common somatic disability [95]. The attempts to replenish the poiesis 
in phase 2 cachexia with low doses of growth factor are remarkable since 
hematopoietic stem cells in the blood significantly contribute to tissue 
regeneration [92]. Thus, phase 2 reflects a victory of a quasi-embryonic 
malignant tissue over non-malignant ones in unequal competition for 
exploit of a naturally limited morphogenesis resource of cancer host’s 
hematopoiesis.  The dividing of tumor's development on phase 1 and 
phase 2 explains why the therapeutic lymphocytopenia coexists with 
beneficial results at forced proliferative potency of bone marrow but 
later, at its exhaustion, becomes dangerous for patients life.

Uncertainty of average results of therapy in group

Such tests as survival and average life span predetermine by a 
distribution of the personal proliferative resources of the hematopoietic 
system among subjects inside the group before the action of injured 
factor [96]. Any real group always consists of patients with transitional 
characteristics of hematopoiesis between two, formally described 
above, phases 1 and 2. For the correct expectation of survival and 
average life span needs to know the ratio of patients with phase 1 
and phase 2 in the untreated group. Most of the survivals curves are 
biexponential that confirm the mixt type of studied groups consisted 
of persons with poiesis in phases 1 and 2. Considerable variability of 
individual life span in groups of cancer patients is persisting even if 
the group consists of members with uniform diagnosis and uniform 
treatment [87]. 

Variability of an average life span at treated cancer diseases covers 
range around 1-25 years independently from age at diagnosis [42] and 
is comparable with the variation of "ideal" natural aging, which occupies 
period 80-110 years old. Analysis of natural survival curves by age for 
countries with high social status has shown specific rectangularity 
of the curve, which arises due to the strongly ≈ 30 fold increasing 
the exponential rate of death at the last 20 - 25 years of life. [80,97]. 
Thus, the majority of untreated patients with malignant diseases were 
older, than their calendar age of diagnoses. Although their lifespan was 
increased by 5 - 10 years because of therapy, when diagnosed between 
15 - 65 years of age, it will result in the concomitant loss of 55 -5 years of 
active natural longevity [80]. Those treated in phase 2 of poiesis had the 
live span of 1-2 years, but those in phase 2 lived 7-10 times longer [87].

The randomized data of the surprisingly lowest (<3%) contribution 
of curative cytotoxic chemotherapy to 5-year survival of adult cancer 
patients from USA and Australia provoked recently chemotherapy 
disappointment [98]. 

The low percentage of complete responses to chemotherapy 
confirmed the disappointment later [99].  These results seem regular 
in the light of practical incurability of patients who start the treatment 
in phase 2 of the reproductive resource of their lymphocytopoiesis, 
and their domination in studied cohorts.  Even the mild stimulation 
of exhausted lymphopoiesis by natural growth factor leads to its 
deterioration [95] and no reason to expect stimulation phenomenon 
from cytotoxic drugs, originated from their historical ancestor in 
oncology − mustard gas.  Thus, the curable part of the group/population 
of patients depends on the percentage of  members with powerful 
lymphopoiesis in it, because of conventional cytotoxic therapy bases on 
the competitive principle restriction of the tumor's feeding with trophic 
lymphoid cells [80,100]
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The principle advantage of competition therapy based on the 
redirection of the morphogenetic lymphocytes from tumor to the 
multitude of slightly injured host tissues is the preservation of a limited 
lymphopoietic reserve, in contrast with all other kinds of cytotoxic 
therapy followed by deep lymphocytopenia. But the level of optimal 
reparable injury of non-malignant tissues, its origin and volume in 
every personal case are in obscure yet. However, it is a perspective 
field for the lymphopoietic system reappraisal, which will overcome 
and reconcile a theoretical inconsistency not attract the attention of 
modern science aimed presumably at the molecular level. 

Phenomenon of spontaneous cancer regression is ex-
ample of competitive tissues regeneration

The disappearance of all or at least some relevant parameters of a 
soundly diagnosed malignant disease without any medical treatment 
or inadequate treatment for the resulting regression defines as 
spontaneous regression (SR). The pathophysiology to spontaneous 
resolution of cancer is not well understood and requires further study. 
It is a rare (1:60000 or 1:100000), but exciting event in oncology, 
which is seen sporadically in every type of cancer and nowadays there 
are no more doubts on the validity of the observation [101-106]. The 
known offered explanation of SR due to severe local infection (with 
streptococci, measles, viral hepatitis, herpes zoster or chickenpox 
during peritonitis, pneumonia, artificial graft versus processes), and 
even the so-called psychoneuroimmunological reactions is doubtful as 
it based on parallel activation of anti-cancer immunity. SR observed 
among the patients with HIV-compromised T-cell immunity [107,108] 
and after an episode of myocardial infarction [106]. In rare cases, forced 
regeneration of non-malignant tissues restricts the vascularization 
processes in the residual tumor and results in further SR [109]. In 
most cases of well- documented SR are possible to see the concomitant 
surgical components in tissues aside tumor such as ample excision of 
abdominal wall, incomplete resection, thoracotomy, bypass surgery 
with intestine, bowel, hernia, followed by a second surgical exploration, 
postoperative fever, pneumonia, prolonged healing of postoperative 
wounds, and ctr. In all such situations the incomplete chronic 
regeneration of injured tissues is the real event which accompanies SR. 
Even extreme physiological conditions such as pregnancy can provoke 
temporary exhaustion of lymphocytopoiesis  followed by spontaneous 
regression of a carcinoid tumor [110]. Therefore, SR, as well as the 
positive results of complementary medicine methods, deserve a more 
scientific systematic registry of cases and sophisticated scrutiny, 
because a deep understanding of such tumor control may lead to a new, 
unexpected, unusual therapeutic approach in oncology.

The simplest explanation of the SR phenomena for the cases of 
long-term tumor dormancy and exceptional treatment-related survival 
bases on the morphogenetic function of lymphocytes. Presently, 
there are no doubts that lymphocytes can promote cancer growth in 
their attempt to repair what they perceive as a wound or other tissue 
injuries including cancer itself [111]. The priority in morphogenic 
service belongs to cancer as an embryonic-like tissue.  The priority 
realizes via redistribution the morphogenetic cells to the tumor and 
following bodyweight loss and cachexia. A competitive mechanism 
assumes the inhibition of trophic supply in the residual tumor during 
the concomitant wound healing after incomplete resection, reparation 
of non-malignant cells injured sublethally by cytotoxic agents, supply 
the enormously high fetus growth and other processes, which consume 
the naturally limited proliferating resource of lymphocytopoiesis of the 
host. The simple competitive scheme explains described cases of SR 
and some other obscure clinical phenomena such as the positive results 

of total body irradiation of cancer patients with low, non-tumoricidal 
doses as well, as cytotoxic chemotherapy at large [79], or radiation 
hormesis [96,112,113]. 

In light of the ability of sublethally injured non-malignant tissues 
to compete with the tumor for the regenerative resource of circulating 
feeding (trophic) cells of bone marrow origin, the possible mode of 
tumor control could look like a crazy fantasy. For example, it could be 
the bone fracture followed by long-term slight mechanical stretching 
of the broken ends to delay the knit-like structure, as used to be done 
for surgical lengthening of bone with the cosmetic aim. Some other 
mechanical provocations of morhogenesis are known for either 
restriction of tumor development [114] or for improvement feeding of 
liver graft inside the holistic system called homeostasis [28]. Accordingly, 
any artificial activity aside tumor without specific cytotoxic properties 
can indirectly control the growth of cancer via provoking renewing 
processes in non-malignant tissues.  But the regular therapeutic benefit 
is possible presumably in conditional phase 1 of lymphopoiesis, as the 
drug treatment results in a tumor burden debulking matched with mild 
cachexia [115]. High resting energy expenditure in cancer patients due 
to hypermetabolism and repeated courses of cytotoxic treatment both 
increase the consumption of limited morphogenesis resource and 
exhausts it faster in comparing with physiological growth only. The 
cachexia in cancer has different grades [116] and is result of exhaustion 
of morphogenesis processes that confirmed by loss of body weight and 
lowest median of overall survival [117]. So, in phase 2 of lymphopoiesis 
exhaustion the successive competitive treatment becomes less probable, 
if not reversed to negative [87,118]. Pending further developments, 
we assume that the nature of the SR phenomenon is similar to the 
exhaustion of lymphocytopoiesis at successful conventional cytotoxic 
therapy in phase 1 of lymphocytopoiesis. However, the probability of 
SR registration is much lower because it arises presumably in phase 
2 of lymphopoiesis when the probability of competitive mechanism 
realization is very low or questionable as well.  

Conclusion
The comparing of clinical cancer features in alternative terms 

of immunity or morphogenesis leads to recognition of the trophic 
contribution of hematopoietic cells into tumor development. 
Replacement of the immune pathogenesis of cancer on a feeding one 
eliminates global discrepancies described in the introduction and 
elucidates the questions, why circulating cells of the host take part in the 
creation of microvessels of malignant tissue, ignoring their supposed 
allogenic, and how cancer may “deceive” the host. This alternative 
is in agreement with bone marrow's potency to produce circulating 
subsets, which are committed to supporting regenerative processes 
in both non-malignant and malignant tissues. As tumor progression 
consumes an extra -number of such circulating cells, the hematopoiesis 
of the host becomes more intensive first and exhausted secondly. 
Therapeutic myelosuppression is the cause for indirect retardation of 
tumor progression at early stages only but becomes a threat to life later. 
That is the reason for the adaptation of cytotoxic therapy for a personal 
clonogenic resource of the hematopoietic system of a patient.
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