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Abstract
The discovery of targetable driver alterations has transformed the treatment paradigm in advanced non-small cell lung cancer (NSCLC). Small molecule tyrosine 
kinase inhibitors have increased survival in the treatment of metastatic NSCLC, and it is now standard of care to screen for targetable driver mutations. The 
knowledge of imaging findings that are characteristic of specific driver alterations will help to identify, triage, and initiate early treatment in patients. This review will 
explore the most common driver alterations in NSCLC, the recent advances in targeted therapy, and the characteristic clinical and imaging features. 
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Introduction
The treatment of advanced non-small cell lung cancer (NSCLC) has 

dramatically changed with the discovery of driver oncogenes and the 
development of small molecule tyrosine kinase inhibitors (TKIs) that 
impede signaling pathways. The change started with discovery of the 
effectiveness of the TKI gefitinib in the treatment of epidermal growth 
factor receptor (EGFR)-mutant advanced NSCLC [1,2]. This has 
sparked the hunt for other oncogene driver alterations and therapeutic 
agents, and led to discovery of activating chromosomal rearrangements 
of the anaplastic lymphoma kinase (ALK), receptor tyrosine kinase 
1 (ROS1), and rearranged-during-transfection (RET) genes as well 
as somatic variations in the V-raf murine sarcoma viral oncogene 
homolog B (BRAF) and mesenchymal-epithelial transition (MET) 
genes [3-11]. These discoveries coupled with encouraging results from 
multiple controlled trials using targeted therapy have led to a paradigm 
shift in the diagnosis and treatment of advanced NSCLC, whereby it is 
now routinely recommended to test for actionable driver alterations 
[12,13].  This combination of therapeutics and diagnostics, aptly 
termed theranostics, represents the progression towards personalized 
medicine in modern oncology [14,15]. 

Despite recommendations for routine molecular testing for NSCLC 
driver oncogenes from both US and European guidelines [12,16], the 
real-world clinical practice remains suboptimal. A recent multinational 
study looking into the rates of molecular testing in advanced NSCLC 
showed substantial variability in percentage of patients undergoing 
EGFR mutation testing ranging from 41% in Germany to 97% in 
Taiwan, and ALK rearrangement testing was even less, ranging from 
23% in Germany to 3% in Taiwan [17]. In the United States a recent 
study demonstrated only 66.9% of patients underwent ALK testing for 
advanced NSCLC in community hospitals [18].  This heterogeneity in 
practice is the result of local differences in drug approval timelines, 
reimbursement policies, and test panels [17]. Furthermore, testing 
for NSCLC driver alterations is continuously evolving with no 
standardized testing platform [19]. Given these roadblocks, it is not 
surprising that paralleling the rise of precision medicine is an increased 
interest in radiogenomics, which attempts to define relationships 
between molecular genomic markers and imaging features [20,21]. 

By leveraging known clinical and imaging features, the triaging of 
patients with advanced NSCLC for specific molecular testing and 
treatment selection can potentially be facilitated [22]. The purpose of 
this review is to outline the current NSCLC driver alterations, the latest 
advances in approved and off-label targeted therapies, and most recent 
developments in NSCLC radiogenomics. 

Targeted oncogene therapy

Underlying the concept of targeted therapy is the idea of oncogenic 
addiction [23], whereby cancer cells become dependent on specific 
oncogenes for proliferation and survival. In healthy cells, multiple 
redundant genes serve similar functions, whereas, in cancer cells, these 
same genes are often inactivated [23]. As shown in in-vitro studies, 
inactivation of critical driver oncogenes in cancer cells leads to cellular 
death due to dysregulated pro-survival and pro-apoptotic signals [24]. 
The small molecule TKIs and monoclonal antibodies can exploit this 
intrinsic weakness and are therefore effective in specific oncogene-
driven NSCLCs [25].

Epidermal growth factor receptor gene (EGFR)

Epidermal growth factor receptor (EGFR) is part of tyrosine kinase 
receptor families responsible for cellular differentiation, proliferation, 
and anti-apoptosis pathways [26,27]. EGFR is implicated in the 
activation of ERK MAPK, AKT-PI3K, and PLC-γ1-PKC molecular 
pathways, which allows for unregulated growth and survival of cancer 
cells [27]. Though EGFR is overexpressed in up to 80% of NSCLC [28], 
only the activating mutations in the EGFR gene are the frequent targets 
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rearrangements fusing ALK gene to the echinoderm microtubule-
associated protein-like 4 gene (EML4) on chromosome 2. The 
expression of this EML-ALK fusion protein aberrantly activates 
multiple signaling pathways, including P13K/Akt and Ras/Mek/Erk 
cascades, involved in cellular survival and proliferation [56].

Multiple trials demonstrated the efficacy of TKIs in treating ALK-
positive NSCLC. The earliest clinical trials demonstrated improved 
outcomes using crizotinib as first-line and second-line treatment for 
ALK-positive advanced NSCLC [57-59]. Subsequent randomized 
clinical trials demonstrated the superiority of alectinib to crizotinib [60]. 
Alectinib is now the preferred first-line targeted therapy of advanced 
EML-ALK lung cancer [61]. The other agents that are approved include 
ceritinib, brigatinib, and lorlatinib [62-64]. Lorlatinib is the latest 
third-generation TKI with potent ALK-mutation coverage and CNS 
penetration [65].

ALK-positive NSCLC is found in up to 5% of lung adenocarcinomas 
[66]. ALK-positive NSCLC has an earlier age of onset with a median 
age of 52 years compared to 64 years in wild-type NSCLC [67]. It is 
interesting to note that ALK rearrangement in other cancers such as 
anaplastic large cell lymphomas also have early disease onset in children 
and young adults [56]. There is a strong association between ALK-
positive NSCLC and light- or never-smoking history. Histologically, 
the vast majority of EML4-ALK mutations is adenocarcinomas and is 
more likely than other mutations to be solid tumors containing signet 
ring cells [68].  Importantly, it has been noted that ALK rearrangements 
occur largely exclusive from EGFR or KRAS mutations [67,69,70], 
perhaps related to underlying oncogene addiction. 

Much progress has been made recently in the realm of 
radiogenomics in terms of imaging characteristics of ALK-positive 
NSCLC. The latter is more likely to be solid tumors with fewer 
propensities for air bronchograms when compared with EGFR-positive 
tumors. These findings have been reiterated in multiple past studies 
[71-73] and confirmed on a recently published meta-analysis [74]. The 
largest study to date on the imaging features of ALK-positive NSCLC 
have also recently demonstrated that these tumors are more likely to be 
found in the lower lobes and have increased association with sclerotic 
bone metastases (Figure 2) when compared to EGFR-positive NSCLC.75 
Furthermore, ALK-positive tumors have been found to be more likely 
associated with distant nodal metastases and lymphangitic spread when 
compared to EGFR positive tumors [75,76]. These novel discoveries 
have the potential to change management in the care of advanced 
NSCLC.  Although imaging alone will not replace molecular genetic 
testing, imaging and clinical features of NSCLC can potentially help 
in the prioritization of testing or re-testing following an inconclusive 
initial result and expedite initiation of targeted TKIS in patients with 
ALK-positive NSCLCs [75].  

ROS1 rearrangements

Rearrangement of the receptor tyrosine kinase 1 (ROS1) gene on 
chromosome 6q22.1 was first implicated in NSCLC in 2007 [3]. Prior to 
this discovery, ROS translocation had been implicated in glioblastoma 
[77], with simultaneous discovery of the same genetic alteration in 
multiple other malignancies such as cholangiocarcinoma, ovarian 
cancer, and angiosarcoma [78]. Similar to other driver oncogenes, 
increased ROS signaling has been associated with cellular proliferation 
and survival with the involvement of the PI3K/AKT, MAPK/ERK, 
SHP1/2, and JAK/STAT3 signaling pathways [79-81]. Interestingly, 
the ROS1 gene has been found to be related to ALK on phylogenetic 
analysis, and this genetic homology likely explains the cross-inhibitory 

for therapy and include TKIs such as erlotinib, gefitinib, and afatinib. 
The two most prevalent driver mutations of the EGFR gene are L858R 
missense substitutions and exon 19 deletions [29,30]. 

The landmark Iressa Pan-Asian Study (IPASS) heralded the use of 
the TKI gefinitib as first-line treatment in the management of EGFR-
mutant advanced NSCLC [31]. At the same time, patients with EGFR 
wild-type fared better with standard chemotherapy than gefitinib [HR 
2.85; P <0.001], a finding that underlies the importance of early and 
accurate molecular testing in the treatment of advanced NSCLC [31]. 
Subsequent clinical trials comparing gefitinib [32-34] as well as other 
TKIs such as erlotinib [35,36], afatinib [37,38], and osimertinib [39] to 
chemotherapy as first-line treatment in EGFR-mutated NSCLC have all 
confirmed findings of improved PFS and superior quality of life. 

EGFR mutations are among the most prevalent actionable driver 
mutations in NSCLC ranging from up to 15% in Europe, 24% in the 
United States, and 47% in Asia [40,41] and are seen more frequently 
in Asians, younger populations, and females with minimal smoking 
history [42-45]. Investigations into imaging features of EGFR-mutant 
NSCLC have demonstrated several distinguishing features from wild-
type EGFR NSCLC, including tumors with more internal cavitations, 
increased prevalence of air-bronchograms, and increased ground-glass 
component on computed tomography imaging [46-49]. An important 
differentiating feature of EGFR mutation adenocarcinomas is the 
increased frequency of diffuse “miliary-like” lung metastases (Figure 
1), an association that has been reported in multiple studies [47,50-52] 
In the setting of advanced NSCLC with mild or no smoking history, the 
presence of diffuse lung metastases should raise the index of suspicion 
for an underlying EGFR mutation and potentially more rapid triaging 
for molecular testing [52]. In the realm of functional imaging, 
18-fluorodeoxyglucose positron emission tomography (18FDG-PET) 
have demonstrated lower maximum standardized uptake value in 
EGFR-mutated NSCLC when compared to EGFR wild-type NSCLC 
[53]. Additionally, preliminary radiomic studies have shown potential 
in predicting EGFR mutations in NSCLC, although more research is 
necessary as such techniques have not been standardized in routine 
clinical practice [53,54]. 

Anaplastic lymphoma kinase (ALK)

ALK rearrangements were initially discovered in non-Hodgkin 
lymphoma in 1994 [55]. In 2007, Soda et al. identified similar ALK 

Figure 1. CT image of the chest in lung windows demonstrating presence of diffuse 
(miliary) lung metastases in EGFR-positive NSCLC. Note the primary lung mass in the 
posterior right upper lobe (arrow) and small right malignant pleural effusion (arrowhead). 
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activity of several ALK-mutation tyrosine kinase inhibitors in ROS1-
mutation NSCLC [78]. 

Crizotinib was the first TKI to be approved by the FDA [82] in the 
treatment of ROS1-rearranged NSCLC in 2016, following the results of 
the phase 1 PROFILE 1001 study, which demonstrated a disease control 
rate (DCR) of 90% and a median progression-free survival (PFS) of 19.2 
months [83]. Entrectinib has recently been approved by the FDA [84] 
for the treatment of ROS1-rearranged NSCLC based in part on results 
from three clinical trials, demonstrating median PFS of 19.3 months 
and objective response rate (ORR) of 72 percent [85]. Although not 
yet approved by the FDA, lorlatinib has also demonstrated efficacy in 
the treatment of ROS1-mutant NSCLC, with favorable preliminary 
results [86]. Additional TKIs under research with potential utility in 
ROS1-positive NSCLC include ceritinib [87], cabozantinib [88], and 
repotrectinib [89]. 

ROS-1 rearrangement is found in approximately 1-2% of NSCLC 
[90,91]. Comparable to ALK-rearranged NSCLC, ROS1 rearrangement 
NSCLC is associated with a younger age of onset and is found in 
predominantly minimal-to-never smokers. Adenocarcinoma histology 
is also found in the vast majority of cases [7,90]. However, despite 
these clinicopathologic similarities to ALK-rearranged NSCLC, ROS1-
rearranged NSCLC has been found to have significantly lower rates 
of extrathoracic metastases and a lower incidence of brain metastases 
[92]. These results were recently corroborated in a radiogenomic 
analysis of ROS1 versus EGFR and ALK mutation NSCLC [93]. Also, 
ROS1 NSCLC was found to be more associated with lymphangitic 
carcinomatosis (Figure 3) and sclerotic bone metastases than EGFR-
mutant NSCLC [93]. Additional studies on the imaging features of 
ROS1-rearranged NSCLC have noted that primary cancers tend to be 
located at the periphery of the lungs [94,95]. 

BRAF mutation

Mutations in the V-raf murine sarcoma viral oncogene homolog 
B (BRAF) gene are relatively uncommon, seen in less than 5%of 
NSCLC [11]. BRAF is an effector of the RAS-RAF-MEK-ERK pathway, 
which regulates cellular survival, growth, and proliferation and is 
first described in melanoma [96,97]. Approximately half of BRAF 
mutations in NSCLC are the result of substitution of valine for 
glutamic acid at codon 600 (V600E) [98]. While historically, BRAF 
mutations were classified according to the presence or absence of this 
point mutation, new research has subdivided BRAF mutations into 
three functional classes related to the degree of RAF kinase activation. 
Class I mutations are V600-positive and function through monomeric 

kinase-independent signaling. Class II and III mutations are both 
V600-negative and with increased kinase signaling in class II mutations 
or impaired kinase signaling in class III mutations [99,100].  

The classification of BRAF-mutation NSCLCs has significant 
clinicopathologic and prognostic implications. Class I BRAF V600 
mutation NSCLC have demonstrated superior progression-free 
survival when treated with standard chemotherapy agents carboplatin 
and pemetrexed [101]. Similarly, studies of BRAF V600 mutation 
small-molecule TKIs have had the most success, due in part to prior 
clinical trials on the treatment of melanoma [102]. Dabrafenib [103], 
vemurafenib[104], and combination therapy involving dabrafenib 
and trametinib[105,106] have all shown promise in class I V600-
positive mutation NSCLC. Currently, dabrafenib plus trametinib 
is approved by the FDA for BRAF V600E mutation NSCLC patients 
who have progressed on chemotherapy. Conversely, the research on 
BRAF non-V600 mutation NSCLC has been less encouraging with 
insufficient data to draw any major conclusions [107]. Unsurprisingly, 
the prognosis of non-V600 mutation NSCLC is significantly worse 
than V600 mutation NSCLC with a three-year survival of 24 percent 
in V600 mutation NSCLC versus 0 percent in non-V600 mutation 
[108]. From a clinical perspective, V600 mutation patients are more 
likely to be minimal- or never-smokers when compared to non-V600 
mutation patients [108]. A recent study on the imaging features of 
BRAF mutations showed that the majority of such tumors were solid 

A 
B

Figure 2. Sagittal and axial CT images of the chest on bone and lung windows in a patient 
with genotype-proven ALK-positive NSCLC. (a) Multiple sclerotic metastases are noted 
in the vertebral bodies and manubrium (arrowheads). (b) The primary mass is noted in the 
right inferior hilum (arrow).   

BA

Figure 3. Axial CT images of the chest in lung windows at the lung bases and at the level 
of the midlung in a patient with genotype-proven ROS1-positive NSCLC. (a) Increased 
nodular interlobular septal thickening at the lung bases in keeping with worsening 
lymphangitic carcinomatosis (arrows). (b) The primary mass is seen in the superior 
segment of the left lower lobe (arrowhead).  

A 
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Figure 4. Axial CT images of the chest and abdomen on soft-tissue windows and 
accompanying 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) 
images in two different patients with genotype-proven BRAF-positive NSCLC. (a) 
Images of V600-negative BRAF NSCLC demonstrating solitary right adrenal metastasis 
with increased uptake on FDG-PET (arrows). (b) Images of V600-positive BRAF NSCLC 
demonstrating multiple intrathoracic metastases along the right mediastinal pleura (arrowheads) 
and in multiple mediastinal lymph nodes, with increased uptake on FDG-PET. 
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and mass-like. The authors demonstrated no significant difference 
in imaging features between the three functional classes of BRAF-
mutation. Intrathoracic metastases and pleural involvement was found 
to be more common in class I mutation tumors compared to class II or 
III, whereas the latter had an increased propensity for intra-abdominal 
spread (Figure 4) [109].

Other targetable mutations

While TKIs have all been approved by the FDA in the front-line 
treatment of EGFR, ALK, ROS1, and BRAF-positive NSCLCs [12], there 
exist many other potentially targetable driver mutations in NSCLC, 
with much ongoing research in this domain. The most promising of 
oncogenic drivers include amplification of the mesenchymal-epithelial 
transition (MET) factor, rearrangement of the rearranged during 
transfection (RET), and mutations of the human epidermal growth 
factor 2 (HER2) genes. Current clinical trials involving these driver 
alterations have been either inconclusive or negative to date, with 
off-label usage of tyrosine kinase inhibitors and immunomodulators 
[15,110]. Similarly, there is currently a paucity of radiogenomic 
research on the imaging features of these particular driver mutations. 

Conclusion
The groundbreaking discovery of specific driver alterations in 

NSCLC also lead to the discovery and adoption of small-molecule 
tyrosine kinase inhibitors for the treatment of advanced NSCLC. The 
clinicopathologic and radiogenomic studies documented significant 
differences in clinical presentation, patterns of metastases, and imaging 
features among the different driver mutations in NSCLC. Although not 
as specific as molecular genotyping, these clinical and radiogenomic 
characteristics can help in triaging patients for appropriate test 
selection, expedited diagnosis and therapy, and repeat genotyping in 
the event of discordant results. The emergence of a multitude of new 
driver oncogenes means that more research is needed on all fronts. 
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