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Abstract
Macroautophagy (hereafter referred to as autophagy) is a highly conserved cellular process that delivers proteins and organelles to the lysosome and controls the 
degradation of these substrates to facilitate homeostasis. In addition, it is an important process to adapt the availability of nutrients. Amino acids activate mammalian 
target of rapamaycin complex 1 (mTORC1), which is the key regulator of the autophagy signaling pathway. The depletion of amino acids negatively regulates 
mTORC1 and induces autophagy. Recent studies have shown that amino acids recruit mTORC1 to the lysosome by affecting vacuolar-type H+-ATPase (v-ATPase) 
and Rag guanosine triphosphatase A/B (RagA/B), thereby leading to the activation of mTORC1 on the lysosome and the inhibition of autophagy. Here, we review 
recent advances in the understanding of autophagy signaling by amino acids and their metabolites.

Introduction
Autophagy degrades cellular cytosolic components by delivering 

them to the lysosome and is a highly conserved catabolic process in 
organisms ranging from yeasts to mammals [1,2]. Autophagy plays 
an important role in basic biological functions, such as intracellular 
clearance of defective proteins and organelles, differentiation, and 
development [3-5]. Dysfunctions in autophagy are associated with 
severe diseases, such as heart disease, neurodegenerative disorders, 
and cancers [4,6,7]. There are three distinct types of autophagy: 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy. Macroautophagy (hereafter referred to as autophagy) 
comprises bulk degradation and a multi-step process by which the 
portions of the cytoplasm and/or organelles are sequestered in a 
double-layered membrane structure called the autophagosome. This 
autophagosome then fuses with a lysosome for degradation. The 
autophagosome–lysosome structure is called the autolysosome [5]. For 
many years, it has been known that autophagy is activated by starvation, 
including amino acid depletion and it controls the concentration of 
free amino acids [8]. Although the detailed mechanism related to the 
control of autophagy by amino acids has not been completely clarified, 
it has been shown that the mammalian (or mechanistic) target of 
rapamycin complex 1 (mTORC1) is the key regulator of autophagy 
by amino acids [9-12]. In this review, we focus on the regulation of 
autophagy by amino acids and their metabolites as well as recent 
advances in studies of the regulation of mTORC1 by amino acids. 

Mechanism of autophagy
The processes involved in autophagy include the stages of initiation, 

during which an isolation membrane (phagophore) is formed, 
elongation and closure, during which a complete autophagosome is 
formed, and maturation, during which an autolysosome is formed 
by the fusion of an autophagosome and a lysosome [5]. It has been 
reported that amino acid depletion induces autophagy. However, recent 
studies indicated that various stimulations, including stress, organelle 
damage, hypoxia, and reactive oxygen species induce autophagy 
[13]. In autophagy, the key regulator is mTORC1, which controls 
the initiation stage of autophagy [14]. mTORC1 comprises mTOR, 
which is a serine/threonine kinase and the main active component, 

mammalian lethal with SEC13 protein 8 (mLST8, which is also called 
GβL) [15], DEP domain-containing mTOR-interacting protein 
(DEPTOR) [16], proline-rich Akt substrate of 40 kDa (PRAS40) [17], 
regulatory-associated protein of mTOR (Raptor) [18,19], and Tti1-
Tel2 [20]. mTORC1 negatively regulates autophagy by repressing the 
Unc-51-like kinase (ULK)1/2 complex, which is an initial regulator of 
autophagy. The ULK1/2 complex comprises ULK1/2, ATG13 [21], and 
focal adhesion kinase family interacting protein of 200 kD (FIP200) 
[22]. When cells are in nutrient-rich conditions, mTOR gets activated 
and inhibits the kinase activity of ULK1/2. On the other hand, when 
cells are in amino acid-depleted conditions, mTOR is inactivated 
and ULK1/2 is activated. Activated ULK1/2 autophosphorylates 
and then phosphorylates ATG13 and FIP200, and then produces 
the phagophore to initiate autophagy. In yeast, ATG8 plays an 
important role in the elongation and closure stage, during which an 
autophagosome is formed. The ATG12–ATG5–ATG16 complex 
conjugates phosphatidylethanolamine (PE) with ATG8 to produce 
ATG8-PE. ATG8-PE mediates membrane fusion and elongates the 
phagophore to complete autophagosome formation. In addition, ATG8 
brings substrates, such as aggregated proteins or damaged organelles, 
into an autophagosome [1]. Mammalian orthologs of yeast ATG8 have 
been identified, which are divided into the microtubule-associated 
protein 1 light chain 3 (LC3) subfamily and the γ-aminobutyric-acid-
type-A receptor-associated protein (GABARAP) subfamily. The LC3 
subfamily contains LC3 alpha (LC3A), LC3 beta (LC3B), and LC3C. 
The GABARAP subfamily contains GABARAP, GABARAP-like 
1 (GABARAPL1), and GABARAP-like 2 (GABARAPL2) [23-27]. 
LC3B has been studied most extensively in these subfamilies. Similar 
to yeast ATG8, LC3B is conjugated to PE via the cooperation of the 
ATG12–ATG5–ATG16 complex to form an autophagosome [26]. The 
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membrane sources of the autophagosome include the endoplasmic 
reticulum [28,29], mitochondrial membrane [30], plasma membrane 
[31], Golgi [32], and recycling endosomes [33]. After autophagosome 
formation is complete, the autophagosome fuses with a lysosome to 
form an autolysosome. The fusion between an autophagosome and a 
lysosome is mediated by Rab7 [34,35], homotypic fusion and protein 
sorting (HOPS) complex [36], UV radiation resistance-associated 
gene protein (UVRAG) [37], and soluble N-ethylmaleimide-sensitive 
factor attachment protein receptors (SNAREs) [38-40]. A recent study 
indicated that the phosphorylation of LC3B by serine/threonine kinase 
(STK) 3 and STK4 is also necessary for the fusion of an autophagosome 
and a lysosome [41]. On the other hand, mTORC1 phosphorylates 
UVRAG to inhibit the fusion of an autophagosome with a lysosome 
[42], indicating that mTORC1 negatively regulates the autophagy 
process not only at the initiation stage but also during the maturation 
stage. Finally, the enzymes in the lysosomes or autolysosomes degrade 
the substrates brought by the autophagosomes.

Autophagy by amino acids and their metabolites
Amino acids are transported into the cell from outside by solute 

carrier (SLC) superfamily proteins, which are membrane-spanning 
amino acid transporter proteins [43]. It has been reported that amino 
acids (particularly leucine, glutamine, or arginine) activate mTORC1, 
thereby blocking the autophagy pathway [9-12]. However, it is still 
unclear whether mTORC1 signaling is affected by one specific amino 
acid or by a combination of amino acids. Some amino acid transporters 
are antiporters, which require an extra amino acid for transport. For 
example, glutamine is imported into the cell by SLC1A5, and the 
imported glutamine is then exported by the bidirectional amino acid 
transporter SLC7A5, which transports the extracellular essential 
amino acids into cells [11,44]. This indicates that extracellular amino 
acid signaling is not the same as intracellular amino acid signaling. 
Therefore, it is difficult to separate the signals of amino acids 
received from outside the cells. In addition, amino acid metabolites 
regulate mTORC1 signaling. Nitric oxide (NO) and citrulline are 
produced from arginine by NO synthase. NO inhibits autophagy via 
the S-nitrosylation of JNK1 and IKKβ. JNK1 phosphorylates Bcl-
2, which binds and inhibits Beclin 1. Phosphorylated Bcl-2 releases 
Beclin 1, which then initiates autophagosome formation. In addition, 
IKKβ phosphorylates AMPK, which then phosphorylates tuberous 
sclerosis 2 (TSC2). Phosphorylated TSC2 is a negative regulator 
of mTORC1, which induces autophagy [45]. Citrulline stimulates 
the phosphorylation of 4EBP1 and rpS6, which indicates mTORC1 
activities; thus, citrulline is considered to be a candidate regulator 
of autophagy [46]. The metabolization of glutamine, which is called 
glutaminolysis, is processed by glutaminase (GLS) and glutamate 
dehydrogenase (GDH). GLS catalyzes glutamine to generate glutamate 
and ammonia. GDH catalyzes glutamate to generate α-ketoglutarate 
(αKG) and ammonia. It has been reported that ammonia induces 
autophagy, but the induction of autophagy by ammonia is independent 
of the mTORC1 and ULK1/2 signaling pathway [47-49]. By contrast, 
αKG activates mTORC1 signaling and blocks autophagy [50,51]. The 
metabolization of arginine, histidine, or proline also generates αKG. 
Therefore, the balance between αKG and ammonia may be important 
in the regulation of autophagy. Specific leucine metabolites do not 
induce mTORC1 signaling [52]; however, leucine activates GDH 
via allosteric regulation to increase glutaminolysis, which regulates 
mTORC1 [51]. Thus, amino acids and their metabolites may affect 
mTORC1 and autophagy via complex signaling pathways.

Regulation of the activity of mTORC1 by amino acids 
mTORC1 is recruited to the lysosome and is activated by GTP-

loaded Ras homolog enriched in brain (Rheb) on the lysosome. Several 
protein complexes play important roles in activating mTORC1 on the 
lysosome by amino acids (Figure 1). The biological substances that 
affect mTORC1 and autophagy are summarized in Table 1.

Recruitment of mTORC1 to the lysosome by amino acids

mTORC1 is recruited to the lysosome surface in amino acid-rich 
conditions. Rag guanosine triphosphatase (GTPase) heterodimers 
found on the lysosomes are the key players in the translocation of 
mTORC1 to the lysosome membrane by amino acids. In mammals, 
four Rag GTPase have been found, namely RagA, RagB, RagC, and 
RagD [53,54]. Unlike other small GTPases, Rag GTPases have no 
lipid anchor and they form a heterodimer that comprises RagA or 
RagB with either RagC or RagD. The GTP or GDP states in Rags are 
regulated by amino acids. RagA/B binds to GDP and RagC/D binds 
to GTP in amino acid-depleted conditions, whereas RagA/B binds to 
GTP and RagC/D binds to GDP in amino acid-rich conditions, the 
latter state being the active state of the Rag heterodimer. The active 
Rag heterodimer binds with Raptor in mTORC1, thereby leading to the 
localization of mTROC1 to the lysosome membrane [53]. Rag GTPases 
lack a lipid anchor; hence, the Rag heterodimer is localized to the 
lysosomal membrane by binding to “Ragulator”, a guanine nucleotide 
exchange factor (GEF) and a lysosomal protein complex, which 
comprises five proteins, namely p18, p14, MP1, C7orf5, and HBXIP 
[55,56]. The binding of Ragulator to the lysosomes is possibly mediated 
by p18, which possesses myristoylation and palmitoylation sites on its 
N-terminal side [57]. Moreover, Ragulator binds to vacuolar-type H+ 
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Figure 1. Regulation of mTORC1 and autophagy by amino acids. Amino acids are sensed 
by v-ATPase in the lysosomal lumen. v-ATPase and Ragulator change their conformation, 
resulting in the conversion of RagA/B into the GTP-bound state by the guanine nucleotide 
exchange factor (GEF) activity of Ragulator. The active GTP-bound RagA/B recruits 
mTORC1 to the lysosome, where Rheb activates mTORC1. Activated mTORC1 blocks 
autophagy. The mechanism involved in the transport of amino acids to the lysosomal 
lumen remains unclear. In the cytoplasm, the GTPase-activating protein (GAP) activity of 
GATOR1 converts RagA/B into the GDP-bound state. GATOR2 inhibits the GAP activity 
of GATOR1 and Sestrins inhibit GATOR2. The inhibitory effect of Sestrins on GATOR2 
is blocked by amino acids and the amino acids then activate RagA/B. In low amino acid 
conditions, RagA/B is converted into the GDP-bound state, which cannot bind mTORC1. 
The inactive mTORC1 is unable to inhibit ULK1/2, thereby leading to the induction of 
autophagy.
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ATPase (v-ATPase), which is an ATP-dependent proton pump on the 
lysosome. The v-ATPase is a multiprotein complex, which comprises 
V0 (membrane-bound complex) and V1 (cytosolic complex), and it 
serves as a proton pump to acidify lysosomes [58]. In amino acid-rich 
conditions, the amino acids inside the lysosome affect v-ATPase and 
weaken the link between Ragulator and the V1 subunit of v-ATPase, 
thereby leading to changes in the state of Ragulator. Next, Ragulator 
converts GDP-bound RagA/B into GTP-bound RagA/B via its GEF 
activity. The GTP-bound RagA/B recruits mTORC1 to the lysosomal 
membrane [59]. RagA/B is also regulated by the GATOR complex, 
which comprises two subcomplexes: GATOR1 and GATOR2. 
GATOR1 is the GTPase-activating protein (GAP) that changes GTP-
bound RagA/B into GDP-bound RagA/B and inhibits the binding 
between RagA/B and mTORC1. GATOR1 is a protein complex, which 
comprises DEP domain-containing protein 5 (DEPDC5), nitrogen 
permease regulator-like2 (NPRL2), and NPRL3. GATOR1 is negatively 
regulated by GATOR2, which comprises Mios, WD repeat-containing 
protein 24 (WDR24), WDR59, SEC 13 homologue-like 1 (Seh1L), and 
secretory 13 (Sec13). In GATOR2, Mios is necessary for the activation 
of mTORC1 by amino acids [60]. Therefore, GATOR1 is a negative 
regulator of mTORC1 and a positive regulator of autophagy. On 
the other hand, GATOR2 is a positive regulator of mTORC1 and a 
negative regulator of autophagy. Recently, it was demonstrated that 
Sestrins (Sestrin1/2/3) interact with GATOR2 and are necessary for 
the complete inhibition of mTORC1 activity in amino acid-depleted 
conditions [61,62]. These results indicate that GATOR1 becomes 
active due to the negative effect of Sestrins on GATOR2 in amino acid-
depleted conditions and active GATOR1 inhibits the recruitment of 
mTORC1 to the lysosome, thereby leading to autophagy. Although 
Sestrins regulate mTORC1, additional research is needed to clarify the 
amino acid sensing pathway upstream of Sestrins.

Activation of mTORC1 on the lysosome
mTORC1 is activated by GTP-loaded Rheb on the lysosome 

membrane [63]. Rheb is a small GTPase and a membrane-binding 
protein, and GTP-loaded Rheb is the active form. Rheb is negatively 
regulated by the TSC–TBC complex, which comprises TSC1, TSC2, 
and Tre2-Bub2-Cdc16 1 domain family member 7 (TBC1D7). TSC2 
has GAP activity for Rheb and inhibits Rheb by changing GTP to GDP. 
The PI3K–Akt pathway, which is related to growth factors or insulin, 
phosphorylates and inhibits the TSC–TBC complex, thereby leading to 
the activation of mTORC1 by GTP-loaded Rheb [64].

Amino acids activate RagA/B and recruit mTORC1 to the lysosome. 
The recruited mTORC1 is activated by interacting with GTP-loaded 
Rheb on the lysosome membrane surface. Thus, both amino acids and 
the PI3K–Akt pathway involving growth factors are considered to be 
necessary for the activation of mTORC1, which inhibits the autophagy 
pathway.

Concluding remarks
Recent studies of mTORC1 have shown that mTORC1 is a 

crucial factor related to the sensing and signaling of amino acids in 
the regulation of autophagy pathway. These include the discovery 
of mTORC1 regulators, such as Rag complex, Ragulator, GATOR 
complex, and Sestrins.

However, the upstream signal transduction pathway that regulates 
Sestrins and the detailed mechanisms related to the regulation 
of v-ATPase by amino acids remain unclear. New technological 
developments may help to understand the detailed mechanism involved 
in the sensing and signaling of amino acids to control mTORC1 and 
autophagy. 
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