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The human erythrocyte can become both a metabolic 
“Achilles’ Heel” and a “Trojan Horse”: Likely consequences 
of persistent excessive glycolysis
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Glycolysis and aging
There is convincing evidence that the glycolytic pathway whereby 

glucose is broken down to pyruvic acid and which occurs in most cells 
in the human body, is not necessarily a benign process. Much research 
has highlighted the deleterious effects of excessive glycolysis towards 
aging and lifespan [1-3], and the converse beneficial outcomes when 
glycolysis is partially suppressed [4-6]. The anti-aging effects of the 
mTOR inhibitor rapamycin can be explained, at least in part, by the 
fact that down-regulation of mTOR suppresses glycolysis and enhances 
mitogenesis and mitochondrial ATP synthesis, whilst upregulation of 
mTOR accelerates glycolysis [7-10]. This is because not only can glucose 
react non-enzymically with proteins to create advanced glycation end-
products (AGEs), but a number of the glycolytic intermediates are 
more reactive than glucose. The triose-phosphates, dihydroxyacetone-
phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P), and their 
highly reactive decomposition product, methylglyoxal (MG), can all 
provoke synthesis of AGE (also called glycotoxins), following reaction 
with intracellular and extracellular proteins, nucleic acids and amino-
lipids [11-13]. Indeed, number of recent reviews and perspective 
pieces [14-16] have emphasized the role of dietary and endogenously 
generated glycotoxins inducing age-associated, deleterious effects 
throughout the body. 

Furthermore, it is important to be note that dietary glycemic index 
(GI) can markedly influence endogenous glycotoxin generation [16,17]. 
A study in mice [16] in which animals were fed iso-calorific diets, but 
of either low GI or high GI (similar to that of the so-called modern 
western diet), has revealed substantial differences in MG-mediated 
protein modification in the animals’ eyes, liver, kidney, heart, and brain 
[16], as well as compromised proteostasis [17]. These findings clearly 
demonstrated that the rate and frequency of glycolysis (glycolytic 
flux) strongly influences MG-mediated macromolecular modification. 
Cumulatively, the above findings demonstrate that excessive glycolysis 
is essentially deleterious with respect to age-related dysfunction.

Glycolysis in erythrocytes 
While much has been written about glucose-mediated glycation 

of haemoglobin in erythrocytes, it is also possible that the human 
erythrocyte could be a source of systemic glycation throughout the 
body. As erythrocytes lose their mitochondria during erythropoiesis, 
glycolysis is the sole energy source within the red cell. This raises the 
possibility that if DHAP and G3P are not immediately metabolised, 
their decomposition product, MG, would be generated and formation 
of AGEs (i.e., glycotoxins) would occur. It is suggested that under 
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the following circumstances this would be a likely outcome. It is 
possible that excessive glycolysis in humans can progressively suppress 
one particular step in the glycolytic pathway in erythrocytes, the 
consequence of which would be to increase intra-erythrocyte MG 
generation [18]. The glycolytic enzyme involved is triose-phosphate 
isomerase (TPI), which catalyses the conversion of DHAP to G3P. 
Studies, initially made nearly 30 years ago [19,20], showed that TPI is 
not a true catalyst because the enzyme’s structure can become altered 
as a result of its catalytic activity: research showed that two asparagine 
residues (15 and 71) in TPI can undergo spontaneous deamidation as a 
consequence if its catalytic action, this has been termed [20] “molecular 
wear and tear”. One consequence of this is the dissociation of TPI into 
monomers and loss of enzymatic activity due to their subsequent 
proteolysis. Furthermore, it has been stated by two eminent experts 
in protein deamidation [21] that “the probability of deamidation of 
an individual TPI molecule is a function of the number of times it is 
used as a catalyst”. Thus, excessive TPI-mediated catalysis can result in 
a decline in enzyme activity, especially in human erythrocytes where 
synthesis of replacement protein is impossible. Consequently, in 
human erythrocytes, it is possible that under such circumstances TPI 
may become rate limiting causing DHAP accumulation; not only is 
DHAP a glycating agent but its spontaneous decomposition product, 
MG, is a well-recognised source of much age-related macromolecular 
modification and AGE (glycotoxin) generation [3]. Interestingly, 
human erythrocytes possess at least 4-times more TPI than any 
other glycolytic enzyme [22], which is indicative of an evolutionary 
adaptation presumably to prevent TPI insufficiency during the limited 
red cell life-span. However, it is reasonable to suppose that during the 
majority of human evolution, the hunter-gatherer diet would have 
contained very much lower amounts of carbohydrate than that of the 
contemporary western diet. Consequently, the in-built 4-fold excess 
of TPI in the human erythrocyte may be insufficient to cope with the 
modern high-GI western diet. Thus, it suggested that the human red 
blood cell, whose membrane is permeable to MG, when presented with 
an almost continuous high-GI diet, may be a systemic source of MG, 
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transporting the glycating agent throughout the body and thereby 
generating glycotoxins in a variety of tissues and accelerating age-
related changes and dysfunction. It might be anticipated that the 
erythrocytic glyoxalase system would dispose of any MG generated 
within the red cells, but it has been shown that glyoxalase-1 activity 
declines during erythrocyte maturation [23], an observation further 
suggesting that over-production of MG in red cells is potentially 
problematic. 

It is interesting to note that (i) high GI diets are associated with 
amyloid accumulation in the brain (as occurs in neurodegenerative 
disease) [24] and (ii) erythrocytes contain alpha-synuclein [25], a 
protein which is not only highly prone to MG-induced glycation [26] 
but which is also a component of Lewy bodies, whose accumulation is 
strongly associated with age-related dementia, Alzheimer’s disease and 
Parkinson’s disease [27]. Thus, it is possible that excessive and persistent 
glycolysis in human erythrocytes would not only increase alpha-
synuclein glycation but also contribute towards the development of 
Lewy-bodies and neurodegenerative disorders by providing a systemic 
source of glycated alpha-synuclein, especially should MG-induced red 
cell lysis (eryptosis) occur [28]. That alpha-synuclein might possess 
prion-like properties [29] simply adds to the problem.

Conclusions 
In summary, one can safely state that highly glycated proteins 

(AGEs or glycotoxins) can profoundly influence aging onset. However, 
not only can glycotoxins be generated by heating food, but they can 
also be generated endogenously via excessive and persistent glycolysis. 
Consequently, it is suggested that excessive glycolysis in human red cells 
can potentially provide a systemic source of MG and glycated alpha-
synuclein, and under such circumstances, the human erythrocyte may 
be regarded as not only as a metabolic “Achilles’ Heel” but also a “Trojan 
Horse.”
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