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Abstract
RASopathies are a family of developmental disorders that share germline mutations in the components of the RAS-MAPK pathway leading to dysregulated signalling. 
A high prevalence of hypertrophic cardiomyopathy (HCM) in these patients suggested genetic involvement. Whether RASopathies are an aetiology of HCM or a 
comorbidity with ominous prognostic implications remained a debatable issue for sometimes in the past. However, recent evidence demonstrates RASopathies can 
result in a specific form of cardiomyopathy (CM), particularly in the paediatric population. Although this type of CM shares many pathologic cardiac manifestations 
with HCM, it is a more severe form with significantly higher mortality rates. Same to other genetic diseases, RASopathies have a very low prevalence, and hence, 
neglected in pathophysiological research. Consequently, pathogenic mechanisms of RASopathy-associated CM remains unclear and lacks aetiological treatment. 
Clinical overlap between RASopathy phenotypes, extensive cardiac variability within each phenotype and within families, and between unrelated individuals with 
the sane genetic mutation has complicated diagnosis and treatment. Thus, the understanding of RASopathy-associated CM and accurate diagnosis is essential to 
guide the choice of the most appropriate treatment. This paper reviews published evidence on RASopathy-associated CM with a focus on its phenotypic expression, 
pathogenesis, clinical evaluation and management.
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Introduction
RASopathies (previously known as neuro-cardio-facio-cutaneous 

syndromes or RAS-MAPK syndromes) are a clinically defined group of 
medical genetic syndromes caused by pathogenic variants in the RAS-
mitogen-activated protein kinase (MAPK) pathway. Typical examples 
of this group of syndromes includes neurofibromatosis type 1 (NF1), 
Noonan syndrome (NS), NS with multiple lentigines (NSML), capillary 
malformation–arteriovenous malformation (CM-AVM), Costello 
syndrome (CS), cardiofaciocutaneous syndrome (CFCS), and Legius 
syndrome (LS). A frequent manifestation of cardiomyopathy (CM) 
in these patients suggests RASopathies may be a potential aetiologic 
agent of CM. However, current supporting evidence is sporadic and 
unclear. In the CM literature, RASopathies lack a unifying terminology, 
variously termed cardiofacial syndromes or syndromic diseases, 
which undermines comparative studies and a general understanding. 
The 2006 and 2007 consensus statements by the American Heart 
Association (AHA) [1] and the European Society of Cardiology (ESC) 
[2] respectively on the definitions and classifications of CMs recognize 
RASopathies as potential secondary causes of CMs. The AHA lists 
cardiofacial disorders (Noonan syndrome and Lentiginosis) as a 
secondary cause of CM whereas the ESC lists Noonan Syndrome as a 
cause of syndromic hypertrophic CM (HCM). 

Recent evidence also suggest the involvement of RASopathies 
in the development of CM. Farag et al. [1] described a difficult case 
of a 26-year old male diagnosed with Noonan syndrome associated 
hypertrophic biventricular obstructive cardiomyopathy (HOCM). 
In a subsequent commentary of the Farag case report, Spartalis et 
al. [2] report that it was not the seminal case report. Four other case 
reports had already described an association between hypertrophic 
cardiomyopathy (HCM) and left ventricular (LV) and right ventricular 
(RV) outflow tract obstruction [5-8]. HCM occurs in 20% of patients 
with RASopathies [5]. Whether RASopathies are a cause of a specific 
form of CM or is a comorbidity in HCM with prognostic implications 
remained a conundrum that warrants additional prospective 

clinical trials for clarification. This paper reviews the current clinical 
understanding of CMs associated with RASopathies as well as identifies 
areas of limited knowledge that could benefit from addition research.

RASopathies
Genetic disorders in humans fall into four different categories 

based on the type of mutation (genotype) and environmental 
involvement or expression (phenotype). The four categories are 
monogenic (Mendelian), complex (multifactorial), chromosomal 
and mitochondrial disorders. RASopathies belong to the group of 
monogenic disorders that result from mutation in one single gene or 
its regulatory sequences. However, allelic heterogeneity is often present 
– when different mutations in the same gene cause the same disorder. 
For example, locus heterogeneity (mutations at different loci causing 
the same phenotype) or clinical heterogeneity (mutations in the same 
gene causing different disorders) known as allelic disorders [9,10]. The 
pattern of inheritance can be autosomal dominant, autosomal recessive, 
x-linked dominant and x-linked recessive. Inheritance in RASopathies 
is through the autosomal, dominant pattern. The affected individuals are 
heterozygous for the mutated allele, located on one of the autosomes. A 
disorder with autosomal dominant inheritance pattern can affect both 
male and female and transmitted by either sex [9].

Over the past decade, there has been an increased recognition of 
human genetic syndromes due to germline mutations in the genes 
encoding components or regulators of the RAS/MAPK pathway. The 
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RAS genes constitute a multi-gene family that includes HRAS, NRAS, 
KRAS, PTPN11, SOS1, RAF1, SHOC2, and CBL. RAS proteins are small 
guanosine nucleotide-bound GTPases that function as a critical hub 
within the cell [9-11]. Extra cellular input in the form of growth factors 
binding to receptor tyrosine kinases, G-protein-coupled receptors, 
cytokine receptors, and extracellular matrix receptors activate Ras 
proteins. The MAPK pathway is among the several critical downstream 
signalling cascades of RAS [12]. Taken together, the RAS-MPAK pathway 
plays a critical role in the regulation of cell cycle and cellular growth, 
differentiation and senescence, all of which are vital processes to normal 
human development [9]. Thus, the dysregulation of the RAS-MPAK 
pathway by pathogenic genetic variants has profound consequences 
for normal human development. Myocardial involvement may lead to 
the development of CM. RASopathy-associated CM has been defined 
as a heterogeneous genetic condition characterized by the early onset 
ventricular hypertrophy and a high prevalence of co-existing congenital 
heart disease related to mutations in the genes encoding components of 
the RAS-MAPK pathway [13].

Each RASopathy exhibits a unique phenotype but because they 
share a common underlying mechanism – the dysregulation of the RAS-
MAPK pathway – they share many overlapping characteristics. They 
include craniofacial dysmorphology, cardiac malformations, cutaneous, 
musculoskeletal and ocular abnormalities, neurocognitive impairment, 
hypotonia, and an increased cancer risk [9-11]. However, distinguishing 
one RASopathy phenotype from another remains a clinical challenge. 
Fortunately, animal models have improved our understanding of the 
molecular causes of autosomal dominant traits and missense mutations 
altering genes whose proteins are responsible for RAS-mediated 
intracellular signalling, has reinforced the existing nosology. The 
identification of the causative mutation has also allowed the detection 
of several genotype-phenotype associations including those responsible 
for HCM. It has also allowed elucidation of the pathogenesis of CM and 
provided valuable insights that suggest RASopathies-associated CM 
may be treatable. A genetic mutation previously known to cause NS has 
been recently discovered to cause non-syndromic dilated CM (DCM) 
with a pathogenesis that also suggests therapy [10]. 

In addition to NS, there is a group of other less prevalent autosomal 
dominant disorders clinically and genetically related to NS. This group 
of disorders share dysregulation of the RAS signalling as the common 
pathogenic mechanism and collectively termed RASopathies. They 
include NS with multiple Lentigines (NSML), Costello syndrome, 
Neurofibromatosis type 1 (NF1), cardiofaciocutaneous syndrome 
(CFCS), Legius syndrome and NS wit loose Anagen hair

Noonan syndrome

Noonan syndrome (NS: (MIM 163950) is the most common 
RASopathy affecting about 1 in 1000 to 1 in 2500 newborns [10]. It is 
a clinically variable developmental disorder inherited in an autosomal 
dominant trait. Its cardinal clinical feature is dysmorphic facial features, 
most commonly most commonly hypertelorism, ptosis, low-set ears, 
and short webbed neck. Other typical phenotypic features include 
congenital cardiac defects, short stature, ectodermal and skeletal 
anomalies (particularly, sternal deformities and cubitus valgus), and 
variable cognitive and developmental defects [14]. Individuals with 
NS also have an elevated risk of developing cancer [9,10]. Although NS 
is a rare disease, it is among the leading non-chromosomal disorders 
affecting development and growth. 

Seven genes have been associated with the development of NS: 
PTPN11 [15], SOS1 [16,17], RAF1 [18,19], KRAS [20], NRAS [21], 

SHOC2 [22], and CBL [23,24]. All these genes harbour heterozygous 
germline mutation and encode various components or proteins 
associated with the RAS/MAPK pathway. The most common gene 
associated with NS is PTPN11 accounting for about half of all NS 
cases followed by SOS1 accounting for 13% of all NS cases [11]. A 
greater majority of NS patients (about 80-90%) exhibit cardiovascular 
involvement. This involvement includes a broad range of congenital 
heart defects most commonly valvar pulmonic stenosis and/or early 
onset of HCM. The prevalence of HCM – classified by the AHA as a 
secondary form of myocardial disease [1] – is 20% in NS patients. Half 
of these HCM-NS patients have congenital cardiac defects. Histological 
evidence of the myocardium in NS-associated HCM is indistinguishable 
from that seen in sarcomeric HCM [25].

The natural history of the NS-associated HCM is distinct in several 
ways from the primary HCM due to mutations in the sarcomeric 
proteins or other paediatric forms of HCM [26,27]. NS-associated CM 
has an early onset. The median age of presentation is five months, with 
more than half diagnosed by the sixth month of life. The onset of NS-
associated CM is earlier than other paediatric forms of HCM, which 
present at an average age of eight years. At diagnosis, patients with 
NS-associated HCM are more likely to have congestive HF than other 
children with HCM at 24% and 9% respectively. NS also manifests with 
significant LVOT with a mean gradient of 32 mm Hg [11]. 

The presence of HCM in NS patients portends a worse prognosis 
with significant differences in survival compared to NS children 
without HCM. In the absence of HCM, children with NS have nearly a 
complete survival 15 years after diagnosis, whereas in the presence of 
HCM survival at 15 years after diagnosis is 70%. The primary cause of 
death for NS-CM is HF [26-28]. The presence of HCM affects survival 
in paediatric patients with and without NS. Children with NS are 
more likely to die early, with most deaths occurring during infancy. 
Comparatively, other forms of paediatric HCM exhibit a steady, 
slower mortality rate and survival declines to NS levels 13 years after 
diagnosis. Long-term follow-up however suggests NS-HCM has higher 
late mortality compared to sarcomeric HCM [26]. Other important 
prognostic factors in NS-HCM children include age of presentation 
and the presence or absence of HF at presentation. The presence of 
HF in infants with NS presenting before six months of age have an 
ominous prognosis with 2-year survival of ~30%. In contrast, infants 
with NS presenting after 6 months of age in the absence of HF have 
a favourable prognosis with survival of ~90% after 2 years. Infants 
with NS presenting before six months in the absence of HF have ~75% 
survival at two years [27].

Noonan syndrome with multiple lentigines

NS with multiple lentigines (NSML: MIM 151100) is a rare 
autosomal dominant disorder. NSML is a similar phenotype to NS 
because it presents with craniofacial features mimicking NS but with 
multiple lentigines [9-11]. Formerly, NSML was termed LEOPARD, 
which is an acronym for the characteristic abnormalities associated 
with the disorders. Lentigines – multiple black or dark brown spots 
on the skin. Electrocardiographic (ECG) conduction abnormalities 
reflecting derangements in electrical activity and the coordination 
of proper contractions. Ocular hypertelorism (widely spaced eyes. 
Pulmonary stenosis (obstruction of the normal outflow of blood from 
the RV. Abnormalities of the genitals. Retarded growth leading to short 
stature. Deafness or hearing loss due to malfunction of the inner ear 
(sensorineural deafness) [10]. Some affected individuals may present 
with mild intellectual disability, speech difficulty and/or additional 
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physical disabilities. However, NSML exhibits wide individual variations 
in the range and severity of symptoms and physical characteristics vary 
from one individual to another [11]. 

NSML and NS result from mutations in the PTPN11 and RAF1 
genes. Both are allelic disorders resulting from different heterozygous 
missense mutations in the same genes, PTPN11 [29,30] and RAF1 [18]. 
The most common NSML-associated PTPN11 mutation affect amino 
acids in the catalytic PTP domain, resulting in reduced SHP2 catalytic 
activity in vitro resulting in a loss of function [29,31]. In contrast, in 
an in vivo Drosophila model, residual catalytic activity in the NSML 
mutant SHP2 protein is sufficient to produce a gain-of-function 
phenotype because of dysregulation of the protein causing continuous 
MAPK pathway activity during development [32].

In NSML patients, HCM occurs in ~80%, which is the highest rate 
of HCM among the RASopathies [33]. However, due to its relative 
rarity, outcome data for HCM in NSML patients is not currently 
available. Approximately 50% of NSML patients with HCM have LVOT 
from the hypertrophy. The clinical course of HCM in most individuals 
with NSML appears relatively benign although a rare case of HCM may 
present in early infancy and progress rapidly. However, published data 
about outcomes of HCM in NS came from clinical diagnoses. Since 
distinguishing NS from NSML remains a clinical challenge in infants 
and toddlers who often do not exhibit lentigines even in the presence 
of NSML, some proportion of infants with poor outcomes described in 
the NS literature may be patients with NSML. Distinguishing NSML 
from NS is not only a classification issue but also has implications in the 
choice of therapy [11].

Costello syndrome

Costello syndrome (CS: MIM 218040) is among the rarer 
RASopathies. It is a multiple congenital syndrome having many 
overlapping features with other RASopathy syndromes. It is a more 
severe phenotype relative to NS. The cause of CS is heterozygous 
activation of germline mutation in HRAS. The distribution of mutation 
shows > 80% of CS patients have a p.G12S substitution followed by 
p.G12A substitution. These substitutions disrupt guanine nucleotide 
binding and reduces intrinsic and GAP-induced GTPase activity 
leading to RAS remaining in the active state [9]. 

Typical clinical features of CS include dysmorphic craniofacial 
features, failure to thrive especially in the newborn period, cardiac 
musculoskeletal, ectodermal and ocular anomalies, hypotonia, and 
variable neurocognitive delay [34]. Phenotypic features manifest in 
the perinatal period with polyhydramnios in utero, and many births 
are premature with low-birth weight. Typical facial features include 
macrocephaly with prominent forehead, epicanthal folds, down-
slanting palpebral fissures, a short nose with depressed nasal bridge 
and broad base, and posteriorly rotated ears with thickened helices and 
lobes [9]. Dermatologic manifestations that support the diagnosis of CS 
include soft skin with excessive wrinkling [35]. 

The majority of CS individuals present with cardiac abnormalities 
including HCM, valve anomalies, septal defects and arrhythmias. The 
prevalence of HCM in CS ranged from 20% to 61%, notably higher 
than in NS depending on the series [36,37]. In the series of Swiwik et 
al. [38], the age of discovery of HCH varied between 5 months to 20 
years. In another case report, Lin et al. [36] reported that diagnosis 
of HCM is not always performed at birth and some patients develop 
HCM later possibly due to the accumulation of metabolites over time 
[39]. In individuals with CS and HCM, the pattern is asymmetric in 

more than 60%. The natural history of CS-HCM is variable but includes 
severe or progressive disease in 40% of the cases and nearly 25% of 
patients undergo septal myectomy. The natural history of CS-HCM is 
indistinguishable from that of sarcomeric HCM with myocardial fibre 
disarray [36,40]. Regular echocardiographic monitoring is necessary 
for the possibility of rapidly evolving forms of HCM.

Neurofibromatosis type 1

Neurofibromatosis Type 1 (NF1: MIM 162200) was the first 
multiple congenital anomaly to be associated with germline mutation 
in the RAS-MAPK pathway. NF1 affects about 1 in 3,000 newborns 
[41]. NFI results from mutations in the NF1 gene, with about 50% of the 
mutations being de novo [42-44]. The NF1 gene encodes neurofibromin, 
which is a RAS-GAP (GTPase-activating protein that is a negative 
regulator of RAS. NF1 mutations cause neurofibromin loss of function 
leading to haploinsufficiency with the cell, reduced RAS-GTPase 
activity and eventually overall increase in active GTP-bound RAS. Due 
to these effects, NF1 is a cancer predisposition syndrome and thus, 
individuals with NF1 are at a greater risk for developing malignancies 
[9]. NF1 has a complex array of clinical signs and symptoms. Its clinical 
diagnosis relies on the presence of café-au-lait maculae, intertriginous 
freckling, neurofibromas and plexiform neurofibromas, iris Lisch 
nodules, osseous dysplasia, optic pathway glioma, and/or a first-degree 
NF1 relative. Other clinical manifestations of NF1 include cardiac 
malformation, cardiovascular disease, vasculopathy, hypertension, 
vitamin D deficiency, brain malformations and seizure. Some may 
manifest dysmorphic craniofacial features similar to those observed in 
NS [45,46].

Many reports in literature have described cardiac involvement 
in NF1 patients. They include valvular pulmonary stenosis, branch 
peripheral pulmonary stenosis, atrial and ventricular septal defects, and 
coarctation of the aorta, and association with HCM [47-50]. Analysis 
of 2,322 cases of NF1 in the National Neurofibromatosis Foundation 
International Database from 1991-98 reported a low prevalence rate 
of cardiovascular abnormalities 2.3% [49]. Related studies reported 
higher prevalence (18.8%) [50] and 27% [48] of cardiac abnormalities 
in 69 and 48 NF1 patients respectively. Cardiac abnormalities included 
mitral/aortic regurgitation, mitral valve prolapse, mild left pulmonary 
artery stenosis and coarctation of the aorta [48,50]. Sutton et al. [51] 
suggested a strong association between NF1 and HCM. In published 
series, the frequency of congenital heart defects range between 0.4% 
and 6.4%. More recently, Incecik et al. [52] evaluated 65 NF1 patients 
for cardiac abnormalities based on the findings of standard ECG 
and echocardiography. Eleven of the 65 patients (15.3%) had cardiac 
abnormalities: secundum atrial septal defect (ASD), pulmonary valvular 
stenosis, ventricular septal defect, tricuspid/aortic valve regurgitation. 
There were no reports of CM. 

In 1988, Fitzpatrick and Emanuel [53] were the first to describe a 
co-existent of NF and idiopathic HCM in two siblings – first degree 
relative. They suggested HCM occurred by chance or NF and HCM were 
manifestations of a common hereditary defect of neural crest tissue, 
or abnormalities of the catecholamine metabolism and nerve growth 
factor in NGF patients can cause secondary ventricular hypertrophy 
with septal involvement. Since then, two case reports have reported an 
association between NF1 and HCM [54,55]. Jurko et al. [54] presented 
a case of 18-year old male with NF1 and HCM with systolic anteward 
movement of the anterior leaflet of the mitral valve. Gradient in the 
LVOT was 85 mm Hg secondary to sub valvular aortic stenosis with 
LV diastolic dysfunction. Abnormalities in catecholamine metabolism 
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and nerve factor growth suggests an aetiological link between NF1 and 
HCM. These abnormalities can cause secondary valvular hypertrophy 
with septal involvement [54]. More recently, Ritter et al. [55] was the 
first to report foetal CM as the presenting feature of NF1 and a review of 
NF1-related LV hypertrophy. The case report suggests that differential 
diagnosis for foetuses with CM is essential even in the absence of a 
known family history of the condition. Since cardiac abnormalities 
in NF1 patients have potential long-term effect hemodynamic 
consequences to justify early diagnosis, cardiologic assessment should 
be mandatory at the time of diagnosis with regular follow-up [54,55]. 

Recently, a rare case of co-existing DCM and NF1 has been 
reported in a 44-year-old male [56]. Chest x-ray showed cardiomegaly 
and pulmonic congestion while laboratory results were unremarkable. 
Two-dimensional (2D) echocardiographic examination revealed 
dilated and diffusely hypokinetic LV (end-diastolic/end-systolic 
dimension 70/62 mm and LV ejection fraction 24%). Colour Doppler 
examination demonstrated severe mitral regurgitation, moderate 
tricuspid regurgitation with increased pulmonary artery pressure. 
The right atrium and the right ventricle were also enlarged Coronary 
angiography revealed normal coronary arteries. This is the first case 
showing the co-occurring NF1 and DCM in an adult patient. Despite 
substantial improvement in the understanding of the natural history, 
pathology and pathogenies of cardiovascular disease over the past few 
decades, it is still inadequate to explain the pathogenesis of DCM in 
RASopathies.

Cardiofaciocutaneous syndrome

Cardiofaciocutaneous syndrome (CFCS: MIM 115150) is among 
the rarer RASopathies with overlapping phenotypic features with NS 
and CS. Individuals with CFCS have NS-like craniofacial features 
[31]. Cardiac abnormalities have a similar frequency with those of NS 
and CS. The most prevalent cardiac abnormalities include pulmonic 
stenosis, septal defects and HCM. Musculoskeletal and ocular 
abnormalities are common. Failure to thrive is a typical characteristic 
in infancy. Neurologic abnormalities are universally present to varying 
degrees and include hypotonia, motor delay, seizures, speech delay, 
and/or learning disability [57]. FCFCS results from mutation in four 
genes that encode proteins in the RAS-MAPK pathway downstream of 
RAS. These genes are BRAF [58,59], MAP2K1 and MAP2K2 [59] and 
KRAS [58]. The role of KRAS in CFCS is unclear since its mutations 
occur in NS [22]. Heterozygous BRAF mutations occur in about 75% of 
mutation positive CFCS patients [60]. The pattern of CFCS transmission 
is autosomal dominant [59]. Since it is rare for CFCS individuals to 
reproduce, the greater majority of CFCS patients result from de novo 
dominant mutation. Although CFCS-associated mutations are in an 
oncogenic pathway, it is still not clear whether CFCS individuals are 
more likely to develop malignancies. CFCS does not appear to have the 
malignancy risk associated with NF1, NS and CS [61,62].

Similar to NS, cardiovascular involvement in CFCS is prevalent 
in ~75% of the patients with pulmonary valve stenosis being the most 
common cardiac manifestation [63]. Published and unpublished data 
including three autopsies on cardiac involvement in RASopathies 
report 53 individuals with CFCS [64-69]. Cardiac ultrasonography 
revealed no evidence of cardiac abnormality in 24.5% of CFCS patients. 
The remaining 75.5% had one or multiple cardiac abnormalities. ASD 
(isolated or associated with pulmonary valve stenosis) occurred in 
22.5% (n=9) of those with cardiac anomalies, five of them had mild 
pulmonary stenosis and two had severe HCM. Other cardiac lesions 
included small ventricular septal defects in two patients and partial 
AV canal in another two patients. Sixteen (40%) patients had some 

form of myocardial disease as the primary or secondary diagnosis. 
Eight has mild HCM with a bulge in subaortic area or with moderate 
diastolic dysfunction [63]. Overall, diagnosis of HCM is common in 
~40 of CFCS patients. Severity varies widely from localized sub-aortic 
involvement to severe global hypertrophy with obstruction. However, 
exact data on outcome of HCM in the context of CFCS are not available 
[11].

Legius syndrome

Legius syndrome (LS: MIM: 611431) is a recently discovered rare 
autosomal dominant genetic skin pigmentation disorder. Brems et 
al [70] first described LS in 2007 after they identified a heterozygous 
mutation in SPRED1 gene was responsible for this mild NF phenotype. 
Previously, LS was called NF1-like syndrome because LS shares many 
phenotypic features with NF1 as well as with other RASopathies but 
LS is a less severe phenotype [9]. The typical phenotypic characteristic 
of LS is multiple café-au-lait maculae without neurofibromas or other 
tumour manifestations of NF1. Additional commonly reported clinical 
manifestations include intertriginous freckling, mild neurocognitive 
impairment, and macrocephaly, with some having dysmorphic 
craniofacial features resembling those of NS. On the other hand, 
typical NF1 neoplastic features such as neurofibromas, plexiform 
neurofibromas, iris Lisch nodules, and central nervous system 
tumours appear dissociated with LS. The LS results from heterozygous 
inactivating mutations in SPRED1 [10]. Definitive diagnosis of 
LS remains a clinical challenge. It is difficult to diagnose LC based 
solely on clinical grounds. The detection of the pathogenic variant in 
SPRED1, the only gene known to cause LS, is necessary to confirm 
diagnosis [10]. Due to the rarity of the syndrome, there are very few 
reports in literature. The current knowledge of the natural history of 
LF relies on the clinical manifestations of fewer than 200 individuals 
with molecularly confirmed diagnosis. Cardiovascular involvement 
remains undocumented in LS patients. Thus, better delineation of the 
clinical manifestation, natural history and cardiac involvement of this 
rare syndrome will likely occur following identification of more affected 
individuals. 

Noonan syndrome with loose anagen hair

Noonan syndrome with loose Anagen hair is a relatively recently 
described RASopathy in 2003. Typical characteristic include ectodermal 
features including darkly pigmented skin with eczema or ichthyosis 
and loose Anagen hair [62]. A very limited number of patients with 
this RASopathy have been described in published literature, a high 
percentage of affected individuals have cardiovascular involvement 
[71-74]. HCM prevalence in patients with NS with loose Anagen hair is 
about 25% but its natural history has not be delineated [11].

Other rarer RASopathies

Reports of other rarer RASopathies without documented 
involvement of the myocardium are available. Whether these rarer 
RASopathies case CM or not is not clear because of inadequate 
description in literature. These rarer RASopathies are capillary 
malformation-arteriovenous malformation (CM-AVM), hereditary 
gingival fibromatosis (HGF), and autoimmune lymphoproliferative 
syndrome (ALPS). Knowledge of these rarer RASopathies are important 
to create a holistic understanding of this potentially life threatening 
syndrome.

CM-AVM is a rarer RASopathy inherited in an autosomal dominant 
pattern. Its cardinal clinical characteristics are multifocal capillary 
malformations, sometimes associated with AVMs and fistulas [75]. 
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The genetic cause of CM-AVM syndrome is heterozygous inactivating 
mutation in the gene RASA1, which like NF1, encodes a RAS-GAP 
[76]. The cardinal feature of CM-AVM syndrome is the multifocality 
of the malformations. AVMs can manifest in many tissues including 
the skin, muscle bone and in various internal organs including the 
heart and the brain. RASA1 gene mutation have also been associated 
with Parkes Weber syndrome and vein of Galen malformations [77]. 
Haploinsufficiency of p120-RAS-GAP (the protein product of RASA1 
gene) causes a reduction in the hydrolysis of RAS-GTP causing an 
increasing in RAS-MAPK pathway signalling. Same to NS and NF1 
syndromes, patients with CM-AVM may be at an elevated risk of 
developing tumours [10].

HGF is a gradually progressive, benign, fibrous overgrowth of the 
keratinized gingiva [78]. It is a genetically heterogeneous syndrome 
inherited in both autosomal dominant and recessive pattern. A 
rare autosomal dominant form of HGF, HGF Type 1 results from an 
insertion mutation in the SOS1 gene. The insertion mutation causes a 
frameshift that generated 22 novel amino acids prior to a premature 
stop codon that abolished four proline-rich SH3 binding domains 
required for GRB2 binding in the C terminus [79]. Ectopic expression 
of the SOS1 protein mutation reveals the truncated protein localizes 
to the plasma membrane without growth factor binding, causing RAS 
hyperactivation and sustained signalling in the RAS-MAPK pathway 
[80]. In HGF Type 1 has no observable development effects due to SOS1 
gene mutation, whereas in NS activating SOS1 mutation is associated 
with development effects [10]. 

ALPS is a rare form of RASopathy that manifests with defective 
lymphocyte apoptosis, an accumulation of non-malignant lymphocytes 
and increased risk of developing haematological malignancies [81]. In 
a majority of cases, ALPS results from impaired extrinsic Fas-receptor 
mediated apoptosis due to mutation associated with the CD95 pathway 
[82]. A germline mutation in NRAS may also cause ALPS independent 
of CD95 pathway. NRAS mutation causes ALPS by activating G13D 
amino acid residue substitution resulting in the stabilization of the 
active GTP-bound form of NRAS and increased signalling of the 
RAS-MAPK pathway. Increased ERK phosphorylation due to NRAS 
activation, inhibits the expression of the apoptosis promoting protein 
BCL-2-interacting mediator of cell death in lymphocytes, in turn 
inhibits intrinsic mitochondrial apoptosis [81]. The effects of activating 
mutations in HRAS and KRAS genes have developmental effects but 
the activating NRAS mutation associated with ALPS does not affect 
development [11].

Pathogenesis of RASopathy-CM
Considerable work has been performed to understand the 

pathogenic mechanisms underlying cardiac defects in RASopathies. 
These efforts have focused on HCM in RASopathies although cases of 
DCM have also been reported. The main mechanisms postulated to 
cause HCM in RASopathies are germline hyperactivation of the RAS-
MAPK pathway and RAS-MAPK independent mechanisms. In the rarer 
DCM form of RASopathy-associated CM, the underlying mechanisms 
remain unclear, although the overlap between genes causing HCM and 
DCM and the roles of RAS pathway signalling in myocardial biology 
may be useful in providing an explanation.

Hypertrophic cardiomyopathy variant

Germline hyperactivation of the RAS/MAPK pathway: RASopathy-
CM has been associated with HCM, and the ESC classification of 
CMs lists it as a secondary aetiology of HCM, rather than a specific 

and a distinct form of CM [2]. Thus, most literature describe the 
pathogenesis of RASopathy-CM is terms of HCM. Functional analyses 
of a wide variety of mutations both in vitro and in vivo and in animal 
models of RASopathies have led to the general concept of RAS-MAPK 
hyperactivation as the primary pathogenic mechanism of CM in 
these patients. Thus, sustained RAS-MAPK activation has a causal 
link to the abnormal development of several tissues resulting in some 
congenital symptoms such as cardiac and craniofacial abnormalities 
as well as alterations in response to different hormones leading to 
endocrine dysfunction. Several mouse models have demonstrated 
the contribution of germline hyperactivation of different RAS-MAPK 
signalling pathways, which has greatly contributed to the current 
understanding of the differences between RASopathy syndromes.

A mouse model of NS bearing mutation in the RAF1 gene generated 
using homologous recombination in embryonic stem cell recapitulated 
the major phenotypic features of NS including HCM, observed as 
early as two weeks. The mice model demonstrated increased signalling 
through the RAS-MAPK cascade in multiple cell types, including 
cardiac fibroblasts and neonatal cardiomyocytes. Consistent with this 
evidence, treatment with a MEK inhibitor reversed the HCM in RAF1 
mice [83]. 

A mouse model of NS bearing mutation in the SOS1 generated 
using homologous recombination in embryonic stem cells recapitulated 
phenotypic features of RASopathies including aortic valve leaflet 
thickening observed after 8.5 months of age in 40% of the mice and 
20% exhibited HCM with increased signalling through the RAS-MAPK 
and Rho-GTPase Rac [84]. Since HCM has a negative association with 
SOS1 mutations in humans, these latter findings in this mouse model 
are less informative. 

A mouse model of NSML with mutation in the PTPN11 gene 
generated using homologous recombination in embryonic stem cells 
recapitulated several features of the NSML phenotype including HCM 
with postnatal onset. The mouse model demonstrated increased signal 
flow through the PI3K-AKT-mTOR pathway in cardiomyocytes, 
whereas ligand-evoked ERK phosphorylation was observed to be 
impaired in these mice. Treatment of the PTPN11 mice with rapamycin 
(an mTOR inhibitor) or with the AKT inhibitor reversed HCM [85,86]. 
These findings support previous data demonstrating a positive role of 
NSML-associated PTPN11 mutation on AKT activation [87]. 

A mouse model with mutation in the HRAS gene generated through 
homologous recombination in the embryonic stem cells recapitulated 
some features of the CS but the cardiovascular features were not easily 
interpretable. These mouse models exhibited cardiac hypertrophy 
with fibrosis by four months of age. However, systematic hypertension 
was absent. Treating the mice with angiotensin converting enzyme 
inhibitor (ACE-I) captopril reversed the cardiac hypertrophy [88]. A 
conditional HRAS allele may be needed to dissect the direct effects on 
the myocardium from the indirect effects.

RAS/MAPK independent mechanisms: In addition to RAS-MAPK 
hyperactivation, several signalling pathways appear dysregulated in 
RASopathies and may be involved in their pathophysiology. Several 
mouse models have shown hyperactivation of P13K/AKT signalling 
in NSML [84-86,89], SOS1-associated and HRAS-associated CS/
CFCS [87-89], and KRAS-related NS/CFCS [90-96]. From a functional 
standpoint, several cellular and animal models of NSML associate 
cardiomyocyte hypertrophy with P13K/AKT/mTOR hyperactivation. 
Treatment with rapamycin or AKT inhibitor and AKTI genetic 
invalidation reverts HCM [84-86,97,98]. In a recent study, a 12-week 



Albakri A (2019) RASopathy-associated cardiomyopathy

 Volume 3: 6-13Int Med Care, 2019              doi: 10.15761/IMC.1000134

everolimus (a rapamycin analogue) treatment improved cardiac 
function in an infant with NSML and rapidly progressive HCM. 
Although cardiac hypertrophy did not reverse within the 12-week 
period, the report provides important insight into new therapies to 
alleviate HCM [8]. The observation that hyperactivation of both RAS-
MAPK and P13K/AKT pathways leads to similar HCM-inducing effect 
remains unclear. However, the possibility that dysregulation of both 
pathways contributes jointly to HCM pathophysiology has not been 
addressed in the same model although crosstalk between the two is 
well-established [99]. In addition to P13K dysregulation, CS-associated 
CM have been casually linked to upregulation of the renin-angiotensin 
II system, driving a hypertensive phenotype and pointing to angiotensin 
convertase inhibitors as potent strategies [100].

Dilated cardiomyopathy variant
Nearly all clinical forms of RASopathy-associated CM present 

with hypertrophied ventricular myocardium. However, some case 
reports have suggested in some RASopathies, a variant of DCM 
may develop, although a rarity [56,101]. The observation of DCM in 
some RASopathy patients has led to the exploration of an aetiological 
link between mutations in the RAS-MAPK pathway genes and the 
development of DCM [102]. The basis of this exploration were the 
known roles of the RAS pathway signalling in myocardial biology and 
the overlap between genes causing HCM and DCM in general. Out of 
nine RAS-MAPK genes screened, missense mutation occurred in only 
one RAF1 gene in five out of 218 individuals of South Asia ancestry 
with DCM. In subsequent screening of RAF1 in individual cohorts of 
variable ancestry revealed small numbers of additional missense and 
one frameshift mutation in South/North Indian and Japanese cohorts 
but none in an Italian cohort. No individual with a RAF1 mutation 
had any extra-cardiac involvement to suggest RASopathy syndrome. 
Although limited families were available for analysis, one individual 
with RAF1 gene variant arose de novo. Available clinical information 
reveals only one difference among individuals with RAF1 gene mutation 
in comparison to others – the mean age of presentation was younger 
(12.6 versus 20 years) [102].

Overall, 9% of DCM cohort presenting in childhood or adolescent 
have RAF1 mutations. The exploration of the functional impact of the 
RAF1 gene mutations through transient expression in human embryonic 
cells revealed the effects of MAPK activation after ligand stimulation 
was inconsistent among the various mutations and different to those 
linked with RASopathy-associated mutations causing HCM [102]. 
Notably, the over-expression of the DCM-associated RAF1 mutations 
resulted in a consistent activation of AKT and its downstream target 
tuberin. Examination of the effects of DCM-associated RAF1 mutations 
in vivo, zebrafish models generated by injecting mRNAs into 1-cell 
embryos. Over expression of two RAF1 mutations resulted in a cardiac 
phenotype with elongation of the atrial and ventricular chambers, 
marked pericardial oedema and reduced heart rates, whereas the over-
expression of the wild-type RAF1 did not perturb heart development. In 
the HEK293 cells, ERK activation remained unaltered in the zebrafish 
models but AKT was hyper-activated. The blocking of AKT hyper-
activation using rapamycin partially reversed cardiac abnormalities. 
Overall, this study reveals the existence of a non-syndromic RASopathy 
due to RAF1 mutation that can cause DCM presenting in childhood or 
in the adolescent. The biochemical profile of DCM-RASopathy, same to 
NSML, caused AKT activation, suggesting possible therapeutic efficacy 
using rapamycin or related drugs that block signalling through mTOR 
[102]. Short-term therapy with mTOR inhibitor has recently been used 
to prevent congestive HF in NSML patients with a severe form of HCM 
although no reversal of cardiac hypertrophy was observed [8,85].

Meta-analysis of cardiac features and management

The seminal description of a RASopathy (NF1) was in 1882 but 
the initial genetic association of a RASopathy (the NF1 gene) was as 
recent as 1990. A decade later, the involvement of a second gene was 
discovered, PTPN11 gene, in NS [103]. Initially, the syndrome was 
termed neuro-cardio-facio-cutaneous syndrome after its most frequent 
clinical features. Subsequent identification of genetic defects in the 
RAS-MAPK pathway led to their classification as RASopathies. Despite 
a clinical overlap between RASopathies, each individual syndrome 
exhibits extensive clinical variability as well as within families and 
between unrelated individuals having the same genetic mutation [9-11]. 
These clinical overlap and variability poses significant challenges for r 
definitive diagnosis as well as renders the development of generalized 
diagnostic criteria clinically infeasible. Correct diagnosis is clinically 
relevant for future follow-up because different syndromes have 
different prognoses concerning certain features. In addition, studies 
on the diagnosis of RASopathy-associated CM have focused on genetic 
features while others have centred research on the prevalence of CM 
and other cardiac manifestations in patients with RASopathies. With 
clinical variability, RASopathy-associated CM lacks pathognomonic 
and current diagnostic work-up depend on detecting genetic mutations 
and accompanied cardiac manifestations. The present meta-analysis 
aggregates published data on patients with RASopathies to determine 
the common genetic mutations and pathologic cardiac features. Such a 
determination is useful to refine therapeutic approaches that is currently 
tailored to specific phenotype including symptoms, arrhythmias, the 
degree of hypertrophy and LV outflow tract obstruction (LVOTO). 

A systematic search was performed on online databases PubMed, 
Cochrane and Google Scholar for relevant studies on RASopathies. 
Reference list of the included studies were screened to identify 
additional studies missed in the online search. The key terms used in 
the online search were cardiomyopathy, cardiac defects, cardiovascular 
abnormalities, RASopathies and each of the following individual diseases 
– Noonan syndrome, Noonan syndrome with multiple lentigines, 
Costello syndrome, Neurofibromatosis Type 1, cardiofaciocutaneous 
syndrome, Legius syndrome and Noonan syndrome with loose Anagen 
hair. The eligibility criteria were studies that enrolled patients with 
RASopathies, evaluated genetic and/or cardiac defects, and reported 
numeric outcomes of the genetic and cardiac defects in these patients. 
The excluded studies were case reports, conference papers and review 
articles. 

Eleven studies met the inclusion criteria and formed the final data 
set for a pooled analysis [5,13,26,48,50,52,68,104-107]. These studies 
were relatively recent, published between 1999 [68] and 2019 [13]. All 
the eleven studies adopted a retrospective observational design. The 
primary objectives of the 11 studies were to determine prevalence of 
cardiac defects and genetic mutation in patients with RASopathies. 
Most of the studies [3,104,106,107] evaluated patients with RASopathies 
in general, three each evaluated NS [5,26,68] and NF1 [48,50,52], and 
one evaluated NSML [105]. The total number of patients enrolled in the 
11 studies was 1,572 at a mean age of 10.2 years (range 7 to 14). In five 
studies [5,13,50,52,105], the male to female representation showed a 
slight male majority (58.6%).

Cardiac defects are common in patients with RASopathies. In five 
studies enrolling 895 had a cardiac defect, translating into an event rate 
(ER) of 59.2% (95% CI: 42.5% to 74.0%; Figure 1) [5,13,48,50,52,104-
107]. HCM was also a common occurrence. In eight studies enrolling 
980 patients, 155 had HCM with an event rare of 17.5% (95% CI: 
8.9% to 31.5%; Figure 2) [5,13,26,48,50,68,104,105]. Analysis of 
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the total percentage of individual cardiac defects reveals the most 
common defect is pulmonary stenosis (46.8%) followed by LVOTO 
(44.7%), secundum atrial septal defect (13.4%) and ventricular septal 
defect 11.1%). Other common cardiac defects occurring with > 10% 
of RASopathy patients are patent ductus arteries (8.9%), mitral valve 
regurgitation (5.6%), mitral valve prolapse (5.1), aortic root dilation 
(4.8%), aortic coarctation (3.8%), septal aneurysm (3.5%), Tetralogy of 
Fallot (2.4%), valvar aortic stenosis (2.4%), aortic valve regurgitation 
(2.0%), and tricuspid valve regurgitation (1.5%; Table 1).

The present analysis finds cardiac defects are a common 
manifestation in all patients with RASopathies. They occur in 
approximately 60% and HCM in 17.5% of all patients with RASopathies. 
Pulmonary stenosis, LVOTO and secundum atrial septa defect were 
also common with an event rate of 44.7%, 13.4% and 11.1%. However, 
due to a smaller number of studies and a wide variation in baseline 
characteristics of patients warrants additional studies to clarify the 
most frequent cardiac features. Additional studies are also essential to 
determine cardiac manifestations by type of RASopathy. These findings 
are consistent with current reviews and diagnostic guidelines that 
recommend the diagnosis of the underlying genetic mutation (type 
of RASopathy) and cardiac manifestation to support the diagnosis of 

CM. Cardiac defects in RASopathies are clinically relevant to guide the 
choice of an optimal therapeutic intervention.

Clinical evaluation 

The clinical diagnosis for RASopathy-associated CM rests 
determination of RASopathy and evidence of associated pathologic 
cardiac defects. The initial diagnosis relies on clinical recognition of the 
phenotypic features and molecular testing used to confirm the clinical 
diagnosis [9]. The correlation between clinic and molecular diagnosis 
often relies on the clinical diagnostic criteria. Although not all causative 
genes for RASopathy have been identified, the progressive growth of 
genotype-phenotype correlations will increase the importance of 
molecular diagnosis and assist in overcoming intrinsic limitation of 
clinical diagnosis, improve patient management and aid in the design of 
clinical trials to develop potential treatment options. At present, clinical 
diagnosis rests on demonstrating the presence of cardiac defects, 
which the present meta-analysis suggest are prevalent in patients with 
RASopathies [9]. 

The cardinal cardiac characteristic of RASopathy-associated CM 
supporting clinical diagnosis is asymmetrical hypertrophy with major 
involvement of basal interventricular septum and sometimes the 
apex, the mid-point and the posterior wall of the LV. The 2014 ESC 

Figure 1. Event rate and 95% CI for cardiac abnormalities in RASopath

Figure 2. Event rate and 95% CI for HCM in RASopathies
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guidelines on the diagnosis and management of HCM recommends 
LV wall thickness > 15 mm as the gold standard for the diagnosis of 
HCM in adults [108]. Since minor degrees of LV wall thickening (13-
14 mm) may occur in genetic and non-genetic disorders, diagnosis of 
HCM may require additional evaluation of supporting features such as 
family history, extra-cardiac symptoms and signs, ECG abnormalities 
and laboratory examination and multimodal cardiac imaging. In 
children, diagnosis requires segmental LV wall thickness > 2 standard 
deviations greater than the predicted mean for age, sex and height-
weight ratio [108]. Hypertrophy in children is often non-specific and 
asymmetrical with the ratio of septal thickness to LV free wall > 1.3 to 
1.0. In comparison with other types of HCM, RASopathy-associated 

HCM exhibits more ventricular hypertrophy and increased prevalence 
of LVOTO as well as a higher grade of RV hypertrophy [7] (Table 2).

Other morphological cardiac defects that can support clinical 
diagnosis RASopathy-associated CM include structural abnormalities 
such as elongation of the mitral valve with anomalous insertion 
(associated with mitral valve prolapse and regurgitation as reported in 
the present review) and abnormal displacement of papillary muscles 
[109,110]. Same to the present findings, congenital abnormalities of the 
pulmonary valve are frequent in RASopathies. Particularly, in NS, severe 
HCM has an early onset associated with an increased risk of long-term 
morbidities to suggest a tailored management based on the aetiology of 
HCM [111]. In this patient cohort, severe PVS is often associated with 

Table 1. Summary of included studies

1st Author Year No. Male 
(n)

Mean 
Age Type Cardiac 

Defects (n)
HCM 

(n) Primary Objective Key Findings

Marino [68] 1999 136 NR NR NS NR 14 To report the prevalence of CHD in NS 
children

Left-sided lesions (aortic coarctation and anomalies of 
the mitral valve) are frequent NS-CHD patients

Tedesco [48] 2002 48 NR 10 NF1 13 2 To evaluate the prevalence of CVD 
abnormalities in NF1 patients

A high prevalence of CVD abnormalities. Congenital 
lesions have potential long-term hemodynamic 

consequences to justify an early diagnosis. 

Lama [50] 2004 69 36 11 NF1 13 2 To evaluate blood pressure and CVD 
involvement in NF1 children

Cardiac defects are common in BF1 patients. No 
significant clinical and cardiac differences between the 

normotensive and hypertensive NF1 patients

Hickey [26] 2011 138 NR NR NS NR 30
To examine links between relationships 

and survival implications between 
structural heart disease and NS-HCM

NS-HCM frequently coexists with structural cardiac 
malformations. Late survival is significantly worse for 

NS-HCM than non-syndromic HCM

Ezquieta 
[104] 2012 230 NR NR All 156 18

To investigate the genotypic profile 
and the diagnostic yield of molecular 

analysis in NS patients

Most patients (94%) with a positive genotype had known 
congenital heart disease, 79% pulmonary stenosis and 

12% hypertrophic cardiomyopathy.

Carcavilla 
[105] 2013 19 13 7.4 NSML 17 12

To characterize the clinical and 
molecular features of LEOPARD 

syndrome patients

NSML display a higher prevalence of HCM. Given its 
clinical implications, active search for HCM is warranted 

in NS patients.

Prendiville [5] 2014 293 176 14 NS 237 47 To define the spectrum of cardiac 
morphology and clinical course of NS 

NS patients have a distinct spectrum of cardiac 
phenotypes with a natural history and response to therapy 

atypical to non-syndromic heart disease

Incecik [52] 2015 65 37 9 NF1 11 NR To evaluate cardiac abnormalities in 
patients with NF1

Cardiac abnormalities have potential long-term 
hemodynamic consequences that justify an early 

diagnosis. 
Calcagni 

[106] 2016 371 NR NR All 298 NR To analyze cardiac morbidity and 
mortality in patients with RASopathy

In a large cohort of RASopathy patients, cardiac 
abnormalities are a frequent observation

Jhang [107] 2016 155 NR NR All 118 NR
To review the clinical manifestations 
and genotype-phenotype associations 

on cardiac lesions of RASopathies

Variety of clinical presentations and their progression 
of severity, proper management with regular long-term 

follow-up of these patients is essential

Chen [13] 2019 47 27 NR All 32 30 To review the mutation spectrum and 
clinical outcome of RASopathy patients

RASopathy-associated HCM is characterized by early-
onset cardiac hypertrophy and a high prevalence of co-

existing CHD 

CHD: Congenital Heart Diseases; CVD: Cardiovascular; HCM: Hypertrophic Cardiomyopathy; NF1: Neurofibromatosis Type 1; NS: Noonan Syndrome; NR: Not Reported  

Cardiac Defect Event Rate (%) 95% CI Studies (References)
Pulmonary Valvular Stenosis 46.8 38.9-55.0 5,13,26,104,105
LV Outflow Tract Obstruction 44.7 31.2-58.9 13
Secundum Atrial Septal Defect 13.4 6.4-26.0 5,13,26,48,50,52,68

Ventricular Septal Defect 11.1 8.6-14.2 5,13,26,52
Patent Ductus Arterios 8.9 6.1-12.7 5

Mitral valve Regurgitation 5.6 3.5-8.8 48,50,52,68
Mitral Valve Prolapse 5.1 3.307.9 5,48,50
Aortic Root Dilation 4.8 3.0-7.7 5,48
Aortic Coarctation 3.8 1.8-7.9 5,26,50,68,105
Septal aneurysm 3.5 1.3-8.9 48,50

Tetralogy of Fallot 2.4 1.4-4.1 5,26,68
Valvar Aortic Stenosis 2.4 1.1-4.9 5

Aortic Valve Regurgitation 2.0 0.9-4.5 5,48,50,52
Tricuspid Valve Regurgitation 1.5 0.2 -10.1 52

Table 2. Cardiac defects (%) in RASopathies
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HCM. Dilated coronary arteries manifest in the context of HCM due 
to RAS-MAPK mutations irrespective of the extent of HCM. Due to 
the higher degree of hypertrophy and the associated valvular defects, 
several pathophysiologic features need consideration during clinical 
evaluation such as LV outflow tract obstruction, diastolic dysfunction, 
myocardial ischemia and cardiac arrhythmias [106]. 

The presence of diastolic dysfunction in patients with RASopathy-
associated CM in the setting of abnormal relaxation and impaired 
ventricular compliance may also support diagnosis. RASopathy patients 
with diastolic dysfunction often present with are exertional dyspnoea 
and exercise intolerance since infancy. Infants have pronounced 
symptoms of feeding difficulties and the failure to thrive [7]. The NS 
phenotype manifests with marked HCM and diastolic dysfunction, 
which may explain the heterogeneous symptoms and clinical events, 
and define appropriate therapeutic options. During clinical evaluation, 
clinicians should also consider LVOTO diagnosis due to systolic 
anterior movement of the mitral valve or due to mid-cavitary LV 
obstruction [33]. Exertional activities appear to worsen LVOTO, which 
is more severe in NS children [7]. Myocardial ischemia is a common 
occurrence in HCM patients including adolescents with RASopathies, 
which manifest because of impaired myocardial perfusion and 
increased myocardial mass. 

Abnormalities of the coronary arteries (the dilation of the main 
left coronary artery, anterior descending artery or right coronary 
artery) may also occur in patients RASopathy-associated HCM [33]. 
Abnormalities in coronary arteries could be a consequence of CHD 
independent from the specific genetic change could help use explain 
the increased risk of myocardial ischemia in NS-HCM patients. 
Frequent symptomatic manifestations in RASopathy-associated CM 
are arrhythmias (supraventricular and ventricular ectopic beats, and 
non-sustained ventricular tachycardia). The current paediatric HCM 
guidelines including those with NS provide markers for assessing the 
risk of sudden cardiac death. LV wall thickness > 6 standard deviation 
and /or a previous history of life-threatening arrhythmias are indication 
for implantable cardioverter defibrillator (ICD) implantation [7]. 
Children with HCM have other specific risk factors such as congestive 
HF, increased LV posterior wall thickness and the presence of coronary 
myocardial bridging [112]. There is need for a specific risk score tool for 
the estimation of sudden cardiac death in NS children.

Clinical management

Pathological cardiac features in RASopathies support the clinical 
diagnosis of CM and guide the choice of the most appropriate treatment. 
However, clinical management of RASopathy-associated CM remains a 
challenge for cardiologists. Generally, since genetic diseases including 
RASopathies have a very low prevalence, they remain neglected in 
pathophysiological research. Consequently, they lack aetiological 
treatment. The sole option for the clinical management of RASopathies 
is symptomatic therapies for CMs developmental delay but treatment 
efficacy and safety of this option remain debatable [102]. Tailored 
treatment approach based on specific phenotype includes cardiac 
symptoms, arrhythmias, the extent of hypertrophy and the presence of 
LVOTO [106]. 

Symptomatic management: Symptomatic management of patients 
with RASopathy-associated CM as applies treatment strategies 
developed for HCM and other non-syndromic congenital heart defects. 
Infants with NS-associated CM have worse prognosis compared with 
older children, and a more severe cardiac involvement correlates with 
a lower survival rate due to significant diastolic dysfunction [27]. 

Patients with CS-associated CM require periodic cardiac follow-up in 
the first two years of life, and annual evaluation and risk stratification 
at puberty. The severity of hypertrophy should guide the frequency of 
cardiac evaluation. Clinical management should also include periodic 
examination in asymptomatic patients [36].

Medical therapy is the first-line therapy in the treatment of the 
majority of patients with RASopathies. General guidelines for medical 
treatment of HCM includes drugs such as beta-blockers, dysopiramide 
and L-type calcium channel blockers to supress symptoms and the 
degree of LVOTO [113]. The ESC guidelines on HCM diagnosis and 
management recommends beta-blockers as the first-line medicine for 
management of HCM using non-vasodilating beta-blockers titrated 
to the maximum tolerated dose. Beta-blocker therapy improves 
diastolic dysfunction and ventricular remodelling [113]. Indication for 
dysopiramide is often an addition to beta-blocker to reduce the degree 
of obstruction. Calcium channel blockers are effective in patients 
non-responsive to beta-blockers. In RASopathy patients who have 
developed congestive HF, diuretics are useful to counterbalance the 
effect on hypotension and LVOTO [108].

Surgical myectomy is the preferred treatment for patients with 
RASopathy-associated CM who appear symptomatic for severe 
LVOTO despite optimal medical therapy [114,115]. The presence of 
LVOTO in children with RASopathy-associated CM exhibit earlier 
cardiac symptoms compared with non-syndromic HCM as well as 
suffer from greater mortality. Some clinical setting advocate an early 
cardiac transplantation for selected patients ineligible for surgery [27]. 
However, in specialized centres experienced in paediatric surgical 
myectomy, surgical relief of LVOTO is a practical alternative to 
transplantation [116]. 

Orthotropic cardiac transplantation is a rare intervention in 
RASopathy-associated CM [28]. However, it may be considered in 
eligible patients with LVEF < 50% and New York Heart Association 
(NYHA) functional class III to IV despite optimal medical treatment, 
intractable ventricular arrhythmias or severe diastolic dysfunction 
(even in the case of preserved LVEF) [108]. Orthotropic cardiac 
transplantation can also be a life-saving strategy for some HCM patients 
but the risk factors and outcomes lack scientific scrutiny but rejection is 
a potential cause of death in these patients [117]. 

Specific data with respect to genotype-phenotype RAS-MAPK 
cascade versus eligibility for cardiac transplantation is lacking. An 
accurate analysis of all additional risk factors should be considered 
carefully to define better the timing of listing and determine patient 
subgroup may derive optimal benefit from a cardiac transplant [118]. 
Cumulative wait list mortality based on the Paediatric CM Registry 
and Australian Registry is significantly higher within 2 to 3 months 
after listing. The mortality rate is much higher in infants with HCM 
suggesting a more malignant natural history for the infantile form in 
comparison to HCM with a late onset [119,120]. The relatively higher 
mortality rate following orthotropic cardiac transplantation may be 
also related to high-priority and critically ill RASopathy infants. Thus, 
orthotropic cardiac transplantation in children with RASopathies 
should be considered as early as possible and prior to clinical 
deterioration because of favourable outcomes following success cardiac 
transplantation [118].

In addition to HF therapies, symptomatic treatment for NS-
associated growth retardation with recombinant human growth 
hormone (rhGH) has had debatable efficacy on both growth, and 
cardiac function and symptoms. Most studies report enhanced 
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growth during the first years of treatment but the benefit of long-term 
outcomes remain uncertain. In RASopathy patients with CM, rhGH 
treatment might potentially affect ventricular development in NS-
patients with cardiac defects although two studies did not find any 
cause for concern [121,122]. Evidence for the effect of rhGH on cardiac 
defects in patients with RASopathy is sporadic and comparison across 
studies is difficult due to different protocols used (variable enrolment, 
ages, treatment durations and doses) and outcome criteria. None of 
the studies evaluation the effect of rhGH on cardiac morphology and 
function are randomized clinical trial, and thus, major biases may affect 
all the studies [123].

Targeted molecular therapies: The identification of specific gene 
mutations and pathogenic mechanisms now provide new insights into 
specific molecular therapies for RASopathies. Shared genetic mutations 
altering the RAS-MAPK and phosphinositide-3-kinase/AKT pathways 
are promising targets for developing specific molecular therapies for 
RASopathy-associated CM [11]. However, because of the variations in 
the pathogenetic mechanisms of RASopathy-associated CMs, no single 
drug is likely to be effective for all the RASopathies. In addition, a better 
understanding of long-term systemic consequences of RASopathy-
associated mutations will also provide insight into additional processes 
to target alleviating specific traits [102].

 In NSML caused by mutation in the PTPN11 gene, CM appears 
to result from increased activation of AKT via mTOR. Already, the 
Federal Drug Administration in the U.S. has approved several mTOR 
inhibitors such as rapamycin and related compounds (also known as 
rapalogues). Rapalogues are immunosuppressive and widely used to 
prevent post-transplantation rejection and coronary re-stenosis after 
stent placement. Serious side effect from the use of rapalogues include 
interstitial pneumonitis, elevated risk for cancer and diabetes. 

Phase III trial is ongoing on the efficacy of rapalogues (everolimus) 
on tuberous sclerosis (a genetic disease due to increased signalling 
via the AKT) and Phase II trial with everolimus in affected children 
for neurocognition. The everolimus trial is establishing the safety 
of the drug in children, thereby providing an opportunity to use the 
drug and other rapalogues for NSML-associated CM. The two trials 
inspired an ongoing trial on the use of rapamycin therapy of HCM 
in patients with LEOPARD syndrome” (https://ncats.nih.gov/trnd/
projects/active/rapamycin-hypertrophic-cardiomyopathy-leopard). 
The trial first evaluates the use of rapalogues on existing NSML-mouse 
models, and if successful advance to early phase clinical trials in NMSL 
individuals. Other RASopathy-associated CM appear to result from 
gain-of-function mutation causing an increase in signalling via the 
ERK although HRAS gene mutations appear to cause hyperactivation 
of both AKT and ERK. 

Preclinical work on mouse model with RAF1L613V inhibition of 
MEK could prevent the development of HCM but no information 
is available on the reversal of HCM, which is clinically relevant. 
Novartis is sponsoring a Phase II open-label trial examining the safety, 
pharmacokinetic and tolerability for their MEK inhibitor in adults with 
NS-associated CM (ClinicalTrials.gov identifier: NCT01556568). The 
primary end-points for the clinical trial are changes in LV mass at the 
third and sixth month of treatment relative to baseline.

The use of molecular inhibitors of the central RAS-MAPK pathway 
promises safety and efficacy for RASopathies patients, concerns exist on 
the safety of long-term therapy (relative to the duration of the typical 
chemotherapy courses for cancers) especially for infants and growing 
children. In addition, RASopathy children may respond differently to 
these new drugs because their of a broader increased RAS pathway 

signalling compared to cancer patients where abnormal signalling is 
restricted to the somatically mutated tumour. 

Another promising approach to the treatment of RASopathies 
is drugs that alter the RAS pathway signalling in a less dramatic 
pattern. Instead of the potent inhibitor of the central RAS-mediated 
signalling pathways, small molecules that alter the signalling more 
subtly including altering cross talk or feedback mechanisms could 
also be effective. Already, Lee and colleagues [124] demonstrated 
mouse model of NS with PTPN11 D61G missense mutation exhibiting 
deficiency in learning and memory that HMG-Co reductase-inhibitor 
lovastatin therapy could rescue. Lovastatin, approved by the Food and 
Drug Administration in the U.S. appears to decrease rather than inhibit 
RAS signaling. However, the efficacy of Lovastatin for the treatment of 
RASopathy-associated CM remained untested although the beneficial 
outcomes on neurocognition suggests promising results [11]. 

Conclusion
RASopathies are a group of syndromes that share germline 

mutations in the genes encoding components of the RAS-MAPK 
pathway. The RAS genes is a multi-gene family that includes HRAS, 
NRAS, KRAS, PTPN11, SOS1, RAF1, SHOC2, and CBL. Noonan 
syndrome (NS) is the most prevalent and its phenotypic variants are NS 
with multiple lentigines, neurofibromatosis type 1, Costello syndrome, 
Legius syndrome, and cardiofaciocutaneous syndrome. The primary 
pathogenic mechanism is germline hyperactivation of the different 
RAS-MAPK signalling pathways leading to abnormal development of 
several tissues leading to the development of cardiac and craniofacial 
abnormalities. P13K/AKT/mTOR hyperactivation is another possible 
pathogenetic mechanism resulting in cardiomyocyte hypertrophy. The 
most prevalent variant of CM in RASopathy is HCM although there 
are also sporadic cases of DCM. Diagnosis relies on genetic testing to 
establish genetic mutation and phenotypic expression, and evidence of 
myocardial involvement to demonstrate CM. Clinical overlap between 
RASopathies, extensive cardiac variability within each phenotype, 
as well as within families and between unrelated individuals with the 
same mutation has complicated diagnosis. Treatment targets the relief 
of cardiac symptoms or altering the pathophysiologic mechanism of 
RASopathies. Symptomatic management follows guidelines for HCM 
and consists of beta-blocker (first-line therapy), dysopiramide and 
calcium channel blockers for those non-responsive to beta-blockers. 
Surgery (cardiac transplantation) for those non-responsive to medical 
therapy. Research is ongoing for molecular therapies that prevent or 
reduce RAS-MAPK pathway signalling with promising results in 
mouse models but untested in humans. 
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