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Abstract
Human coronaviruses (HCoVs) cause respiratory diseases infecting the upper and/or lower respiratory tract. The six human coronaviruses so far identified are HCoV-
229E, HCoV-OC43, HCoV-NL63, HCoV-HKU-1, SARS-CoV, and MERS-CoV. Four of these coronaviruses (HCoV-229E, HCoV-OC43, HCoV- NL63, and 
HCoV-HKU-1) are known as circulating common coronavirus found continuously in the human population causing mostly common cold, with few cases of severe 
diseases. In late December 2019, a novel human coronavirus, now called SARS-CoV-2, was identified during an outbreak in Wuhan, China. The disease spectrum 
caused by this virus is now called COVID-19 (Coronavirus Infectious disease 2019). This novel coronavirus has spread globally resulting in a world-wide pandemic 
that continues to rage as of now. SARS-CoV-2 has a high case morbidity and mortality rate and is high risk to the elderly populations, immune-compromised 
populations, and to those who have other critical issues like heart disease, diabetes, etc. 

In this review, we summarize the latest information of the epidemiology, pathogenesis, and clinical aspects of SARS-CoV-2, and discuss the current scientific and 
therapeutic advancements for clinical treatment of this pandemic novel coronavirus.

Introduction
In November 2002, a novel cornonavirus, SARS-CoV, was first 

detected in China, while the larger outbreak was not confirmed 
until 2003. This virus caused pneumonia and other respiratory 
complications, referred to as Severe Acute Respiratory Syndrome 
(SARS). This epidemic spread to 29 countries, and infected about 9000 
people with a more than 10% mortality rate [1-5]. SARS was identified 
as a human coronavirus, adding to four known coronaviruses that 
primarily cause common cold in humans (HCoV-229E, HCoV-HKU1, 
HCoV-NL63, and HCoV-OC43) [6-8]. In 2012, MERS-CoV (Middle 
East Respiratory Syndrome coronavirus) was first identified in Saudi-
Arabia, isolated from a human with pneumonia [9]. As of March 12, 
2019, a total of 2,494 cases with MERS were found in 27 countries 
with a mortality rate of more than 30% [10,11]. In December 2019, a 
new severe acute respiratory syndrome (SARS)-associated coronavirus 
was identified during an outbreak in Wuhan, China, originally called 
2019-nCoV [12]. This new virus primarily causes pneumonia, among 
other syndromes, and the spectrum of diseases caused by it is called 
COVID-19 (Coronavirus Infectious Disease 2019). This virus was later 
named SARS-CoV-2. In March 2020, WHO declared COVID-19 as a 
global pandemic disease [13]. As of August 10, 2020, 89,270 people 
in China had been infected with SARS-CoV-2 with more than 4,693 
fatalities. In the USA, there have been over 4.9 million confirmed cases 
with 160K deaths, and worldwide there have been more than 19.7M 
cases with 728K fatalities [14]. In this review, we will summarize the 
current knowledge of human coronavirus infection, with emphasis on 
therapeutic strategies. 

A: Human Coronavirus and its Different Types:

Coronaviruses (CoVs) are single-stranded positive-sense 
RNA viruses whose genome (>27kb) is encapsulated within a lipid 
membrane envelope carrying spike protein [15]. This envelope is 
studded with glycoprotein spikes that give coronaviruses their crown-
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like appearance [16,17]. Table 1 displays the sources of Coronavirus 
and their classifications. 

A-1. Zoonosis: SARS-CoV is known to spread from bats to civets 
and then to humans [18], while MERS-CoV spreads from bats to 
dromedary camels and then to humans [19]. Genome sequencing of 
SARS-CoV-2 showed that about 96% overall genome sequence were 
identical with Bat CoV-RaTG13 [20], suggesting that human-SARS-
CoV-2 and Bat coronavirus might share a common ancestor [21,22]. 
However, protein sequence alignment and phylogenetic analysis 
showed similar residues of receptors in many species, such as turtles, 
pangolins and snakes [23].

A-2. Classifications: Coronaviruses are divided into four genera: 
alpha, beta, gamma, and delta [24]. α- and β-CoV are able to infect 
mammals, while γ- and δ-CoV tend to infect birds. Among the four 
common human coronaviruses HCoV-229E and HCoV-NL63 are of 
alpha-type, while HCoV-OC43 and HCoV-HKU1 are in the group 
of beta-type coronaviruses. These four coronaviruses cause mild to 
moderate upper-respiratory tract illnesses, including the common 
cold [25,26]. SARS-CoV, MERS-CoV, and SARS-CoV-2 are all beta-
coronaviruses and cause a severe lower respiratory tract infection 
with higher rates of morbidity and mortality than the α- human 
coronaviruses [12].

Based on current epidemiological investigation, the incubation 
period of SARS-CoV-2 ranges from 1–14 days while most commonly 
it is 3–7 days, similar to other coronaviruses. However, SARS-CoV-2 is 
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known to be contagious during this latency period prior to symptoms 
appearance [27,28].

A-3. Transmissibility and Pathogenicity: Coronaviruses express 
several structural proteins including the glycosylated spike (S) protein 
that mediates the host cell invasion via binding to a cellular receptor 
protein. Cell tropism is defined by the entry cellular receptor employed 
by the coronavirus, via its S glycoprotein. SARS-CoV, SARS-CoV-2, and 
H-CoV-NL63 utilize Angiotensin-Converting Enzyme-2 (ACE2) as 
the cellular receptor, whereas MERS-CoV uses Dipeptidyl-Peptidase-
IV (DPP-IV), H-CoV-229E uses Amino-Peptidase N (APN), HCoV-
HKU1 and HCoV-OC43 employ Sialic Acids as receptors [28-33]. 
Additionally, all of the α-CoV S-protein contain a sialic-acid binding 
domain [34,35]. 

The coronavirus infection process requires S-protein priming, 
which is facilitated usually by host serine proteases, whether membrane-
associated, or extra-cellular. SARS-CoV-2 appears to use cell-bound 
transmembrane serine protease 2 (TMPRSS2-11?) [11]? from cleavage 
of S into S1 and S2 upon binding to ACE2 [28]. A portion of the S 
proteins on the coronavirus virion, may also be cleaved already prior to 
export of virion outside the cell by proteases in the Golgi apparatus. The 
viral S glycoprotein thereby consists of two subunits, S1 and S2 [36]. 
While the receptor-binding-domain (RBD) of S1 protein determines 
the virus-host range and cellular tropism, the S2 protein with its two 
tandem domains, heptad repeats 1 (HR1) and heptad repeats 2 (HR2) 
mediates virus-cell membrane fusion [37,38]. Following fusion, the 
viral genome is released into the cytoplasm in a Cathepsin L and pH 
dependent manner, similar to Influenza or Ebola virus (Figure 1) [39-
43]. Virion fusion is followed by endocytosis, and uncoating of virion 
in the cytosol with release of the genomic RNA and virion proteins. 
These processes are not well studied. 

Like many other RNA viruses, coronavirus replicates in the 
cytoplasm of the infected cells. [39-43]. The viral genomic RNA 

is released into the cytoplasm forming replication-transcription 
complexes (RTC) in double-membrane vesicles [44-46]. The RTC 
replicates continuously and synthesize a nested set of subgenomic RNAs 
[47,48], which encode accessory proteins and structural proteins. The 
viral genome encodes several nonstructural proteins including RNA-
dependent RNA polymerase (RdRp), coronavirus main protease 
(3CLpro), and papain-like protease (PLpro) [49,50]. The viral RdRp 
synthesizes a full-length negative-strand RNA template for making 
more viral genomic RNA. The RdRp also contains a nuclease function 
with limited proof-reading ability, which is why coronaviruses do not 
mutate as rapidly as many other RNA viruses such as influenza [51]. 

Translation of the positive strand viral RNA into two viral 
polyproteins, pp1a and pp1ab occurs utilizing cellular machinery. This 
is followed by cleavage into individual effector proteins carried out 
by viral proteinases, 3CLpro and PLpro [49,50]. PLpro further may 
deubiquinate certain host cell proteins, including interferon factor 3 
and NF-κB, resulting in immune suppression [50,52],

In the endoplasmic reticulum (ER) and Golgi the newly formed 
genomic +ve RNA, nucleocapsid proteins and envelope glycoproteins 
assemble and form lipid-coated viral particles [53,54]. Mature 
coronavirus particles are subsequently transported to the cell surface 
[46]. Coronaviruses appear to exit cells via cell lysis rather than export/
expulsion, although these processes are not well studied. [55].

Cryo-EM structure analysis has revealed that the binding affinity 
of SARS-CoV-2 S-protein to ACE2 is about 10−20 times higher than 
that of SARS-CoV S-protein [56,57]. It is speculated that this may 
contribute to the reported higher transmissibility and contagiousness 
of SARS-CoV-2 as compared to SARS-CoV [58]. SARS-CoV-2 
progeny viruses are released into the luminal side of the human airway, 
facilitating spread and transmission through droplets and aerosols from 
coughing and sneezing [10,58,59]. Importantly, sustained human-to-
human transmission, along with many exported cases across the globe 

Table 1. Human Coronavirus and its Different Types [21]

Cartoon of Human Coronavirus

Hemagglutinin (HE)

Lipid Bilayer

Envelope Glycoprotein (E)

Membrane Protein (M)

Nucleoprotein (N)+ RNA

Spike Protein (S)

Common Human Coronaviruses Other Human Coronaviruses
(Severe Disease Causing Pathogens)

HCoV-
229E HCoV-NL63 HCoV-OC43 HCoV-HKU1 HCoV-SARS HCoV-MERS HCoV-SARS-2

Zoonosis 
Bats 

Camels (?) 
Human

Bats  
(?)  
Human

Rodents  
Bovines  

Human

Rodents 
(?) 

Human

Bats 
Palm Civets 

Human

Bats 
Dromedary Camels 


Human

Bats 
Pangulins (?) 

Human

Classifications α−Type α−Type β−Type β−Type β−Type β−Type β−Type
Incubation Period 2-5 days 2-5 days 2-5 days 2-5 days 2-11 days 2-13 days 3-6 days

Clinical Symptoms

Malaise,
Headache,

Sneezing, Nasal 
discharge,

Sore throat, Fever, and 
Cough

Cough, Fever, 
Hypoxia, Croup, 

Rhinorrhea, 
Tachypna

Malaise,
Headache,

Sneezing, Nasal 
discharge,

Sore throat, Fever, 
and Cough

Fever, Running 
nose, Cough, 

Dyspnea

Fever, Myalgia, 
Headache, Dry 

cough, Respiratory 
Distress, Diarrhea, 

Dyspnea

Fever, Myalgia, 
Headache, Cough,

Sore throat, 
Respiratory Distress, 
Diarrhea, Dyspnea, 

Pneumonia

Fever, Myalgia, 
Headache, Dry 

cough,
Respiratory Distress, 
Diarrhea, Dyspnea, 

Pneumonia
Fatality Rates None None None None ~10% ~35% ~4%
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have led to a world-wide pandemic. However, the disease severity is 
not necessarily linked to transmission efficiency but may be due to 
other factors such as age, immunosuppression, or coexisting conditions 
(such as diabetes or heart disease) [60]. Prior exposure to common 
cold coronaviruses is thought to provide protection from SARS-CoV-2 
resulting in milder disease [61]. Such protection can possibly result 
from HCoV-NL63 infection, as this virus also uses ACE2 receptor, 
and its S-protein bears significant similarity with the SARS-CoV-2 
S-protein [62].

Zhou et al. have confirmed that the SARS-CoV-2 uses the same 
cellular entry receptor, ACE2, as SARS-CoV [20]. Yet SARS-CoV-2 
is substantially less virulent (~3% mortality) compared to SARS-CoV 
(~10% mortality) and MERS-CoV (~35% mortality) [10, 63]. HCoV-
NL63 also binds to the ACE2 receptor, has become endemic in the 
human population, but usually causes only a mild upper respiratory tract 
disease, except in sporadic cases wherein the same clinical syndrome 
as COVID-19 is reported but with reduced morbidity [23,64]. Thus, 
the mechanisms of human-to-human transmission and pathogenicity 

of SARS-CoV-2 reflecting its now-proven pandemic potential are still 
unknown.

Further, Zhang et al. (2020) recently have found the presence of 
SARS-CoV-2 in fecal swabs and blood, indicating the possibility of 
multiple routes of transmission [65]. It is highly transmissible in 
humans, especially in the elderly and people with underlying diseases 
[66-69].

A-4. Symptoms of COVID-19: The main clinical symptoms of 
COVID-19 patients include fever, cough, and fatigue [70]. In addition 
to the Acute Respiratory Disease Syndrome (ARDS), or Severe Acute 
Respiratory Syndrome (SARS), the SARS-CoV-2 virus can cause 
adverse effects in the digestive system, urogenital system, central 
nervous system, heart, and circulatory system as well [71,72]. Its 
pathogenicity reflects the broad distribution of ACE2 in human cell 
lines and tissues, thus causing disease in multiple organs. Additionally, 
multiple inflammatory syndromes (especially in children, dubbed 
“MIS-C”), and multi-organ failures can result from the dysregulated 

 

Figure 1.  SARS Coronavirus spike receptor-blinding domain (RBD) complexed with ACE2 receptor (A, B), structure of SARS EBD complexed with the receptor (C, D) [108]
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attack by the host immune system against the virus directed at clearing 
out infected cells. People with underlying diseases, like cancer, heart 
problems, diabetes, and obesity, are susceptible to infection and prone 
to serious outcomes, which include ARDS, cytokine storm, and death 
[73, 74].

B. Diagnosis of COVID-19 in Human: 

Chest radiography can reveal a typical feature of bronchiolitis 
with specific features, enabling reliable diagnostics especially in 
an emergency setting. The most common Chest X-ray pattern was 
multifocal and peripheral, associated with interstitial and alveolar 
opacities. In contrast CT exhibited ground glass opacities and was less 
diagnostic for differentiating the morbidity level of the syndrome [75]. 

Any unknown pathogen identification is possible using molecular 
biology tools but may be difficult and time-consuming; however, 
genome-specific PCR primers can be designed for RT-PCR analysis 
to specifically detect the virus. FDA has approved several tests on an 
emergency approval basis for the detection of COVID-19 [76].

Antigen Tests: Detection of one or more SARS-CoV-2 protein 
antigens in the patient blood. These are quick but not very sensitive 
nor specific. A positive antigen test means current infection by SARS-
CoV-2 or antigen from a different virus that is cross-reactive to the 
antibodies used in the detection kit. A positive test should be confirmed 
by a viral RNA test (see below). A negative test means the antigen level 
in the sample is below detection limit, but does not rule out current 
infection, so it must be repeated later as the circumstances require. 

Nucleic Acid Amplification Tests (Molecular tests): Detection of 
viral RNA (vRNA) in the human specimen by RT-PCR suggests that 
the virus might be present. However, if the amount of viral RNA in a 
particular sample is too low or contaminated with other kind of virus, 
molecular tests can yield a false negative result. The American Society 
for Microbiology has developed step-by-step verification procedures 
for commercial use of COVID-19 diagnostic tests. Both qualitative and 
quantitative tests are available now. 

Antibody Tests (Serology): Generally blood samples are used as a 
specimen for the presence of antibodies produced in response to SARS-
CoV-2 infection, however it does not test for the presence of the virus 
itself. Therefore, it does not indicate whether a person is currently 
infected or not, but whether the person was subjected to an infection 
in the past.

An antibody test can yield a false negative result if the test is 
conducted too early before the antibodies have developed, or too late, 
after the antibodies have subsided. It can yield a false positive result if 
patient antibodies are from a different infection but cross-reactive to 
SARS-CoV-2 antigen. 

The Centers for Disease Control and Prevention (US CDC) has 
developed a test for SARS-CoV-2 in respiratory and serum samples 
from infected persons [77]. NIAID (National Institute of Allergy and 
Infectious Diseases) is also trying to develop additional diagnostic tests 
for COVID-19. These tests are expected to facilitate preclinical studies 
and the development of therapeutics [78].

C. Genome Analysis of Coronavirus and its implications to 
COVID-19 (Figure 1):

All coronaviruses express a set of structural proteins in the order 
of 5′ - spike (S) - envelope (E) - membrane (M) and nucleocapsid (N) 
– 3′, as well as some additional nonstructural proteins. The structural 

gene region also harbors several ORFs that are interspersed along the 
structural protein coding genes. The location and number of these 
accessory ORFs vary between the CoV species [79]. The replicase gene 
is comprised of two overlapping ORFs (open reading frames) that 
encode up to 16 non-structural proteins required for viral replication 
and the modulation of any antiviral responses.

Alignment of the HCoV-NL63 and HCoV229E genomes, both 
alpha-coronaviruses, show the highest sequence similarity, except 
within the M gene [48]. A careful analysis has shown a large insert of 
537 nucleotides are present in the 5′ portion of the S gene of HCoV-
NL63 but not in HCoV-229E. A BLAST search, further did not find 
any similarity between the additional 179–amino acid domain of the S 
protein of HCoV-NL63 with any other coronavirus sequence deposited 
in the GeneBank [57,80].

HCoV-NL63 uses ACE2 receptor to bind for invasion and replicates 
efficiently in monkey kidney cells, as do SARS-CoV, and SARS-CoV-2, 
though the S proteins of HCoV-NL63 do not match with the two SARS-
CoVs sequences [54]. It appears that sequence homology is not the 
determining factor in receptor binding, and that the RBD quaternary 
structural features and specific interactions govern binding affinities. 

D. Cell Culture Models for COVID-19 Infection: 

Different cell culture models are there which can mimic different 
epithelial tissues [81]. Tracheo-bronchial cells which are the first 
targets of human respiratory viruses can be cultured in air-liquid 
interface (ALI). Apical side of the cell layer while exposed to the air, 
the basolateral side is submerged in the medium. The expression 
pattern of both primary human bronchial ALI and epithelium in vivo 
are comparable. Therefore, it appears that these culture methods can be 
used for virus replication as well as interactions with the host cells [82]. 
HCoV-HKU1 can propagate in alveolar HAE cultures (Human airway 
epithelial cell culture), and shows a better tropism for alveolar type II 
cells [83].

To date, most inhibitors are studied using HCoV-susceptible cell 
lines. However, an organotypic human airway culture system, since 
they contain many different cellular sub-populations, may represent an 
improved system for the testing of new antiviral compounds [84]. Such 
tissue culture models would require significant efforts for validation 
of assays and for interpretation of datasets due to heterogeneity of cell 
populations with variable content. 

E. Therapeutics (Table 2): As of June 1, 2020, no specific 
approved treatment for COVID-19 is currently available. Remdesivir 
and favipravir, both small chemical antivirals that affect replication 
cycle, have been approved in different countries under emergency 
use guidelines. With the knowledge of the genome as well as protein 
structural information from previously discovered six human 
coronaviruses, several investigators are examining the development of 
therapeutics. So far 71 treatments and 47 vaccines are in development. 
Treatments includes various antibodies, antivirals, corticosteroids, 
immune suppressants, cell-based therapies, and most commonly, 
re-purposed drugs [85]. Some potential treatments are listed in the 
Table 2, whose targets are known and also preapproved as a medicine 
for other disease [23]. Candidate vaccines for COVID-19 that are in 
clinical phase are listed in the Table 3 [86-88].

E-1. Antiviral Compounds: Inhibition of viral attachment to the 
host cells and entry should be the prime target of several antiviral 
compounds [28]. Chloroquine, generally known as an anti-malarial 
drug, interferes with the terminal glycosylation of ACE2, reducing 

https://www.fda.gov/medical-devices/emergency-situations-medical-devices/faqs-diagnostic-testing-sars-cov-2#serology
http://asm.org/Protocols/EUA-COVID-19-Testing-Protocol
https://www.invivogen.com/chloroquine
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Candidate Vaccine characteristics Developer Status
DNA Based
(INO-4800) DNA plasmid vaccine with electroporation Inovio Pharmaceuticals Phase I

NCT04336410
Non-replicating viral vector

(Ad5-nCoV)
Non-replicating viral vector; Adenovirus 

Type 5 vector CanSino Biologics Phase II
NCT04313127

Protein subunit
(NVXCoV-2373)

Full length recombinant SARS-CoV-2 
glycoprotein nanoparticle vaccine adjuvanted 

with Matrix.

Novavax/Emergent Biosolutions/ Praha 
Vaccines/ Serum Institute of India/ AGC 

Biologics

Phase I/II
NCT04368898

Inactivated virus
(PiCoVacc) Inactivated virus, plus Adjuvant Sinovac Phase II

Inactivated virus
(Unnamed) Inactivated virus Beijing Institute of Biological Products and 

Sinopharm
Phase II

ChiCTR2000032459

mRNA vaccine (mRNA 1273) LNP-encapsulated mRNA vaccine encoding 
S protein Moderna and NIAID Phase I (NCT04283461)

Inactivated virus
(Unnamed) Inactivated virus Wuhan Institute of Biological products and 

Sinopharm Phase I/II

Adenovirus Vaccine
(AZD 1222) Adenovirus Vaccine University of Oxford and AstraZeneca Phase IIb/III

Inactivated virus
(Unnamed) Inactivated virus Institute of Medical Biology and Chinese 

Academy of Medical Sciences. Phase I

RNA
(3LNP-mRNAs) RNA BioNTech/ Fosun Pharma//Pfizer Phase I/II

(NCT04368728)

LV-SMENP-DC

Lentiviral-modified DC’s expressing 
minigene of selected

viral proteins; administered with antigen-
specific CTLs

Shenzhen Geno-Immune Medical Institute Phase I (NCT04276896)

Pathogen-specific aAPC
Lentiviral-modified aAPCs expressing 

synthetic minigene
of selected viral proteins

Shenzhen Geno-Immune Medical Institute Phase I (NCT04299724)

Table 3. COVID-19 candidate vaccines in clinical phase [83, 113, 114]

Some Potential Medicines Target(s) Approved
Medicine for Mechanism of action on SARS-CoV-2

1) Lopinavir
2) Rupintrivir
3) Small molecule Inhibitor :
   (3-1): 4-methyl-N-[(1S)-2-oxo-2 [[(1S,2E)-

1-(2-phenylethyl)-3-(phenylsulfonyl)-
2-propen-1-yl-amino]-1-(phenylmethyl)
ethyl]- 1-piperazinecarboxamide.

   (3-2): (αR)-α-[[3-(4-chloro-2-
fluorophenyl)-1-oxo-2-propen-1-yl]
amino]-N-[(1R)-1-methyl-2-(2-oxo-3-
pyrrolidinyl)ethyl]- benzenepropanamide

An inhibitor that may disrupt the function of 
3CLpro and PLpro, which was tested

against SARS-CoV.

Lopinavir:
Approved for
HIV infection

An inhibitor that may disrupt the function of 
3CLpro and PLpro, which was tested

against SARS-CoV 

1) Remdesivir 
2) Ribavirin
3) Aurine tricarboxylic acid
4) Favipiravir (Favilavir) 

RNA-dependent RNA polymerase (RdRp) 
for replicating viral genome

Remdesivir:
Ebola virus infection

Favipiravir:
Viral infections

An inhibitor of viral RdRp, as tested against 
SARS-CoV in cell Culture

1) Arbidol
2) Camostat mesylate

Arbidol:
A viral surface protein (S) for binding to host 

cell receptor ACE2/.

Camostat mesylate:
Inhibitor of TMPRSS2

Arbidol:
Influenza antiviral Drugs

Camostat mesylate:
Antiviral Dug

Arbidol:
Inhibits Viral protein binding to ACE2

Camostat mesylate:
Prevents cleavage of the spike protein in 

SARS-CoV-2, which is necessary for the 
virus to infect cells.

Benzopurpurin B NSP15 (poly(U)-specific
endo-ribonuclease

Suppress viral infectivity by inhibiting 
endo-ribonucleae

NSP15
Chloroquine Endosome/ACE2 Malaria Elevates endosomal pH and interferes with 

ACE2 glycosylation
Antiviral Antibodies S-Protein and other antigens Neutralizing Antibodies
Nanoviricides: Venus Fly-Trap S-Protein Multipoint binding sites on Virus particles; 

and destruction

Table 2. Some Possible Therapeutics of COVID-19 [23]
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ACE2 levels, and thus limits virus-receptor binding and thereby entry 
into the host cell [88]. Furthermore, endosomal acidification which is 
needed for viral genome release into the host-cell cytoplasm may be 
inhibited by Chloroquine [88], or its more potent chemical derivative, 
Hydroxychloroquine [20,23], that have shown promise in testing with 
SARS-CoV-2 in vitro. Recently, Wang et al. have shown that chloroquine 
effectively inhibits SARS-CoV-2 in vitro [89], however controversies 
regarding the efficacy vs. toxicity of these therapeutics remain.

Camostat and Nafamostat, inhibitors of TMPRSS2, have shown 
effectiveness against coronaviruses entry into the host cells (e.g. MERS-
CoV) [28, 90]. Further, endocytic entry of β-coronaviruses can be 
blocked by Imatinib, an Abelson (Abl) kinase inhibitor [91]. All of these 
potential therapeutics inhibited the replication of MERS-CoV, SARS-
CoV, and HCoV-229E in the low-micromolar range, which is indicative 
of their potential utility as a broad-spectrum antiviral remedies [83].

E-2. Protease Inhibitors to Block Viral Evasion: The viral evasion 
needs proteases like 3CLpro and PLpro, which help the translation 
of essential viral polyproteins (pp1a and pp1ab) and then further 
proteolysis to form effector proteins [92]. Kaletra, a combination of 
Lopinavir & Ritonavir, inhibits the activity of 3CLpro and is approved 
for the treatment of HIV/AIDS [93]. Preliminary clinical trials using 
Kaletra for the treatment of SARS-CoV-2, however were disappointing 
[94]. Efforts are still going on to test in combination with other antiviral 
drugs. 

Disulfiram, an FDA-approved alcohol-aversion drug, was found 
to inhibit papain-like protease in MERS-CoV [95]. Numerous other 
inhibitors are being examined, with promising results against SARS 
viruses [83].

E-3. Inhibition of Viral replication: A number of components 
including the viral RNA-Dependent RNA polymerase (RdRp) and 
Helicase (nsP13) protein are required for the virus replication [92]. 
The small molecule 1,2,4-triazole is a derivative that inhibited the viral 
NTPase/helicase of SARS- and MERS-CoVs with low cytotoxicity 
[96,97], and could be considered for use against SARS-CoV-2.

Remdesivir (GS-5374), an adenosine analog and RdRp inhibitor, 
developed to combat other viruses (e.g. Ebola virus) has shown strong 
activity against SARS-CoV-2 in vitro [68,98,99], but only limited 
effectiveness in some of its clinical trials [100]. While it shows strong 
activity in cell culture studies, its clinical activity is limited by its rapid 
metabolic conversion to nearly inactive form, and its maximum dosage 
is limited by organ toxicities including liver and kidney. Favipravir, 
another RdRp inhibitor approved for emergency use in novel Influenza 
in Japan, was approved in Japan and in China for emergency use for 
COVID-19. However, it has very limited clinical effectiveness, which is 
comparable to or less than that of remdesivir. 

E-4. Immune therapy: The first line of defense against any 
pathogens is the innate immune system of the host. The receptor 
determinant N-acetyl-9-O-acetylneuraminic acid or O-Acetylated 
Sialic acid Interferon (IFN) System coordinates with various cellular 
effector proteins and impair virus propagation and transmission. In 
general, early infection with HCoV-229E, MERS- or SARS-CoVs do not 
express any innate immunity in the primary target cells of the human 
airway [101]. This is most likely due to the fact that 5′ terminal of the 
viral mRNA being capped is indistinguishable from the host cellular 
mRNAs, and therefore not detectable by cellular immune sensors 
[89,102-104]. In addition, various other CoV accessory proteins inhibit 
interferon signaling at different stages of the host-innate-immune 
response [105,106].

Sarilumab and Tocilizumab, the monoclonal antibodies (mAbs) 
against the IL-6 receptor, could be possible therapeutics for COVID-19 
patients, but may develop a risky cytokine storms [107]. Recent in vitro 
experimental data find more susceptibility of SARS-CoV-2 to type-1 
interferon (e.g. Interferon-β) [108]. 

A combination of treatments such as steroids, interferon, and the 
antiviral drug Ribavirin has shown an effective antiviral effect [109-
112]. Ribavirin is highly toxic to red blood cells. 

E-5. Vaccines: Vaccines against the spike proteins (S) of both 
SARS-CoVs and MERS-CoVs pathogens are promising in animal 
models [113,114]. A selection of COVID-19 candidate vaccines that 
are in clinical phase are shown in Table 3. [115-117]. 

E-6. Animal Model for Vaccine Development: Traditionally, 
studies with respiratory viruses use mice and ferrets as an animal 
model. However, no animal model could represent human infection 
or disease correctly. Currently, there is no validated animal model for 
SARS-CoV-2 infection, and therefore there is no animal model for 
testing efficacy of either therapeutics or vaccines for COVID-19. 

Further, adapted cell-cultured viruses may not show the same 
properties as wild-type viruses. SARS-CoV was able to replicate in 
different strains of inbred mice but to enhance their clinical signs, 
human ACE2 has been introduced. Transgenic animal models (mouse) 
expressing human ACE2 have become available. This provides for 
emulation of virus entry in human cells, but does not mimic the human 
response to the virus. These models are not yet validated for clinical 
pathology to the best of our knowledge. However, cells isolated from 
these transgenic h-ACE2 animals could be used for infection inhibition 
studies in vitro [118,119].

Considering the emergence of SARS-CoV-2, along with SARS- 
and MERS-CoVs, the pandemic potential of coronaviruses is now well 
established, and animal model development is necessary. Currently, 
a few animal models for MERS-CoV have been established by 
introducing the human variant of the viral receptor DDP4 (Dipeptidyl 
Peptidase 4) in place of the mice variant. However, the method of 
insertion of human Dipeptidyl Peptidase 4 (hDPP4) negatively affects 
the degree of pathogenesis [120,121]. Various non-human primates 
(NHPs) can be naturally infected with both MERS-, and SARs-CoVs, 
but the disease presentation and pathogenesis differs among the 
subspecies. Furthermore, NHP models are expensive and come with 
ethical obstacles [122].

E-7. Novel nanomedicine approaches: U.C. SanDiego engineers 
coated a polymer using an extract of lung cell membranes and 
demonstrated that this so called “nanosponge” indeed acted as a decoy 
for the SARS-CoV-2 virus in vitro [123]. Such an undefined materials 
cannot be advanced into regulatory frameworks.

Considering the merits and demerits of the above approaches, 
Nanoviricides, Inc., a Shelton (CT) based biotech company dedicated 
to antiviral research, has developed a platform technology that goes 
beyond what antibodies can do for attacking a virus. We have developed 
a “Venus-Fly-Trap” for virus particles. The antiviral drug platform that 
we call “nanoviricide®” provides multiple binding sites that mimic the 
cellular receptor on a polymeric micelle in high density. The binding 
sites are made up of small chemical virus-binding ligands designed 
using molecular modeling. Virion binding to the nanoviricide would 
lead to a multi-point attack on the virus particle, with the metastable 
polymeric micelle inverting and fusing into the lipid membrane of 
the virus envelop, thereby destabilizing the virus particle. Antibodies, 

https://www.invivogen.com/chloroquine
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in contrast, only bind to the virus via two points, requiring multiple 
antibodies to tag the virus, and further require the patient’s immune 
system to destroy the virion. In addition antibodies are highly specific 
and single point mutations can allow viruse escape. In contrast, the 
ligands are designed to be broad-spectrum, and to mimic the conserved 
features of the binding of virion to its cognate receptor, thereby 
minimizing the possibility of viral escape (Table 2). In order to assess 
how broad-spectrum effect our drug candidates may possess we are 
testing our compounds now against two different coronaviruses, 229E 
and NL63 (Work is in Progress). (https://www.marketwatch.com/press-
release/nanoviricidesdevelops-highly-effective-broad-spectrum-drug-

candidates-againstcoronaviruses-2020-05-12. NanoViricides 
Develops Highly Effective Broad-Spectrum Drug Candidates Against 
Coronaviruses. Published: May 12, 2020).

Conclusions
Since no vaccines are currently available for any of the respiratory 

coronaviruses (SARS, MERS and SARS-CoV-2), it is necessary to 
investigate the spread of infections and to follow the protection 
guidelines. In accordance with other recent reviews on this area [74], 
we agree that more detailed epidemiological studies are required 
to determine the pathological effects on other body/organ systems. 
Finally, a more detailed knowledge of the genomes and proteomes of 
previously described coronaviruses HCoV-NL63, HCoV-229E, SARS-
CoV, MERS-CoV, and their role in the pathogenesis, is needed to 
better understand infection as well as for improved drug design. An 
appropriate animal model also needs to be developed that mimics the 
human clinical pathology. Further, the development of an accurate 
diagnosis of COVID-19 will shed light on the true incidence of this 
virus infection. 
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