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Introduction
When oxygen, nitrogen or chlorine reactive species are 

excessively formed in cells and tissues they are implicated in many 
pathophysiological and disease events, including diabetes mellitus 
(DM) [1,2]. As a consequence of the oxidative and nitrosative stresses 
occurs lipid peroxidation (measured by biomarkers like malonaldehyde, 
4-hydroxynonenal, and conjugated dienes), protein and aminoacid 
oxidation (evaluated by protein carbonyls), nucleic acid oxidation 
(quantifyied by DNA oxidized bases) and carbohydrate oxidation 
(measured by glycosilation products like glycated hemoglobin [HbA1] 
and advanced glycation end products [AGEs] commonly found in DM 
animal models and human patients [3-8].

Oxidative and nitrosative stresses are situations characterized when 
the production of free radicals surpass the antioxidant defense levels, 
resulting in many peroxidative and nitrosative damaging reactions 
which in turn cause since DNA injury and mutations until cell death 
by necrosis or apoptosis [2].

During at least four decades, an extensive number of research 
groups have been studied the oxidative and nitrosative stress 
biomarkers as well as the different antioxidant defense mechanisms 
by measuring the antioxidant enzymes (superoxide dismutase 
[SOD], catalase, glutathione reductase [GSH], glutathione peroxidase 
[GPx], ceruloplasmin, metallothioneins) [1,2,9]. In DM patients its 
well established that oxidative and nitrosative stress decreases cell 
antioxidant enzyme defenses, especially the GSH, and increase the 
SOD activity in order to detoxify the superoxide anion mitochondrial 
overload [7,8,10,11]. In macrophages of alloxan-induced diabetes, 
there were higher levels of SOD activity which were further stimulated 
by melatonin activity, but decreased by insulin action [12].

In the beginning of the 90’s, Miller et al. [13], based on techniques 
from the 1980 decade, had developed a new total antioxidant capacity 
assay, which was called by “total antioxidant capacity” (TAC). The 
advantage of this assay is to measure the antioxidant capacity of 
virtually all elements and compounds of a biological sample (blood, 
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urine, feces, tissue sample), vegetable or fruit extract or even foods or 
pharmaceuticals [14-16].

This article review and update the clinical, cellular, and molecular 
knowledge of free radicals and antioxidant defenses in diabetes mellitus.

Ethiopathogenesis of diabetes mellitus I and II
Diabetes mellitus has been conceptualized as a group of metabolic 

disorders characterized by hyperglicemia as a result of insulin secretion 
failure and/or lacking of insulin action on target cells. The chronic 
diabetic hyperglicemic state has been related to long-term organ 
damage especially to the heart, endothelium and blood vessels, nerves, 
kidney, and eyes [17-19].

Type I diabetes mellitus

The highly toxic and reactive hydroxyl free radicals are released as 
a consequence of the pro-inflammatory immunoglobulin-mediated 
beta cell attack in type I diabetes mellitus (T1DM) patients [20]. In 
T1DM genetic as well environmental factors induces free radical 
release by beta cells which in turn activates resident macrophages 
[21]. Those resident pancreatic macrophages are the primary sources 
of free radicals in which also participates the recruited and activated 
macrophages, dendritic cells, and in a later phase the specifically 
activated T-lymphocytes that decisively contribute to destruction of the 
insulin secreting β cells [21,22]. Free radical release in T1DM patients 
is triggered by activation of the NFkB pathway and consequently the 
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induction of TNF-α and IL-1β cytokines from antigen-presenting cells 
(macrophages and dendritic cells) [21,22].

Type II diabetes mellitus

As a consequence of glucotoxicity and lipotoxicity there is a chronic 
loading of oxygen and nitrogen free radicals in type 2 diabetes mellitus 
patients [20].

In T2DM, although genes are plausible associated with the disease 
risk, lacking of exercise, obesity, poor dietary habits, poor sleeping, and 
other risk factors have been implicated in disease causality [22-26].

Is Diabetes mellitus associated with decrease total anti-
oxidant capacity?

It should be emphasized oxidative stress and consequently the 
depletion of cell antioxidants is not always present in diabetes, since 
it correlates with disease progression and severity. In an animal model 
of diabetes, increased lipid peroxidation was observed with no further 
changes in antioxidant parameters (SOD, ceruloplasmin, GPx, GSH 
and TAC) [27]. In other experimental model of diabetes authors 
observed decreased levels of renal catalase despite of increased levels of 
heart catalase, kidney and heart SOD, and liver GPx [28].

T2DM patients, with or without proteinuria, a biomarker of 
renal damage, had very lower TAC levels compared with the control 
group (DM-free) (1.7 mmol/L and 1.4 mmol/L versus 2.7 mmol/L) 
[3]. In the same manner, it was verifyied a significant impairment of 
plasma TAC and GSH and an increase of lipid peroxidation in T1DM 
children patients [5]. Diabetic men had increased values of both lipid 
peroxidation products and advanced glycoperoxidation end products 
(AGEs), and reduced TAC in seminal plasma compared to non-
diabetic men [29].

Among diabetic patients, obesity has an additional effect on 
decrement of the TAC, SOD, and vitamin C levels [30].

A study with young adult healthy subjects observed an inverse 
association between dietary TAC and serum glucose, systolic blood 
pressure, and free fatty acids [31].

A recent study covering patients with diabetic complications 
observed a significantly increase on oxidative stress markers as well as 
the total antioxidant capacity [32].

However, women with gestational diabetes mellitus had lower 
levels of total antioxidant capacity which was correlated with lower 
vitamin E and zinc status [33].

An interventional study with pomegranate juice supplementation 
decreased LDL oxidation and increased TAC in type 2 diabetes mellitus 
patients [34].

Another study with type 2 diabetic men revealed higher oxidative 
stress and both lower TAC and zinc values [35] which were corroborated 
by other studies in different populations [36-40].

In fact, diabetes mellitus has been associated with disruption of 
cellular zinc turnover with increased loss of zinc and oxidative stress 
[35,41,42].

Hyperglycemia as the great villain in diabetes mellitus: 
induction of massive depletion of antioxidant defenses

Hyperglycemia induces impairment on functional activity of the 
pancreatic islet beta cells, an effect which has been associated to an 

intense and deleterious oxidative stress [43]. While the functionality 
of beta cells is preserved, the plasma TAC levels remain higher [44]. 
Prediabetes pathogenesis characterized by insulin resistance and 
hyperinsulinemia is followed by the failure on glycemic control 
and finally the diabetic hyperglycemic status [45]. During the DM 
pathogenesis plasma TAC levels are being progressively reduced 
[44-48]. It is important to note that patients with acute pancreatitis 
due to alcoholism, biliary problems, trauma or idiopathic origin had 
presented yet a 40% decrease on serum TAC [49]. When the subject 
becomes diabetic his antioxidant defenses are compromised and this 
has been correlated with progressive DNA damage [50]. Another study 
has pointed out that diabetic animals had increased lipid peroxidation 
than the normal group; and that DNA oxidative damage was higher 
among those animals with metabolic syndrome features [51]. In this 
respect, increased oxidative DNA damage is suggested to occur in 
insulin-resistant prediabetics as well as T2DM patients [52]. Diabetic 
patients without glycemic control presented reduction on plasma 
TAC, which was partially recovered among DM patients with adequate 
glycemic control [46].

An interesting Spanish study evaluated erythrocyte antioxidants 
from healthy subjects and diabetic patients with or without 
microvascular complications and found decreased levels of erythrocyte 
GPX, GSH and increased levels of erythrocyte SOD in both diabetic 
groups compared to controls [52]. The same study also revealed 
increased lipid peroxidation and hemoglobin glycation among the 
diabetic groups, whereas advanced oxidation protein products were 
higher among those diabetics with microvascular complications. 
Although TAC can not be affected in well controlled T2DM patients 
[53], it has been depleted in uncontrolled type 2 DM patients where 
glycated hemoglobin (HbA1c) was positively associated with both lipid 
peroxidation products and c-reactive protein (PCR), whereas HBA1c 
was inversely associated with SOD and TAC levels [54]. This depletion 
of intracellular GSH reserves was also observed in the liver and kidney 
[55]. This depletion can be partially explained by the overexpression 
of the NADPH oxidase in kidneys and subsequent free radical damage 
in diabetic nephropathy [56], since impaired function of NADPH 
oxidase has been suggested to have a central role on activation of other 
oxidative stress enzymes [57]. It has been found that DNA oxidation 
and nitrosative stress with excessive production of nitric oxide and 
peroxynitrite were implicated in progression of chronic diabetic 
nephropathy [58]. It has been suggested that bilirubin and biliverdin 
can afford protection against diabetic nephropathy by blocking 
NADPH oxidase [59].

A recent study reported that DM patients had higher levels of lipid 
peroxidation products, uric acid, total cholesterol, LDL-cholesterol, 
and tryglycerides, and lower values of enzymatic antioxidants (SOD and 
GSH) and of HDL-cholesterol [60], confirming previous studies [61].

A previous study confirmed that diabetic polyneuropathy was 
linked to a significantly lowering on blood TAC [62]. However, in a 
recent clinical study, TAC was not significantly decreased even in 
the presence of SOD and GPX depletion [63]. It is possible that this 
discrepancy could be due to different clinical stages of the patients from 
the two studies. Further work is necessary to investigate the possible 
clinical correlations between antioxidant defense and nervous system 
commitment in diabetic subjects. Diabetic patients with retinopathy 
had also increased levels of lipid peroxidation and reduced serum 
concentrations of SOD, GSH, and vitamin C [64]. In aqueous humor of 
hyperglycemic animals, it was found decreased levels of TAC, ascorbic 
acid, and GSH [65], which can contribute to diabetic retinal damage.
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Molecular pathways of diabetes mellitus pathogenesis
Investigating the molecular shape of diabetes, it has been reported 

mitochondrial dysfunction and apoptosis of myocardiocytes from 
diabetic human heart [66]. In this special context, the disruption of the 
uncoupling mitochondrial protein-2 (UC-2) into the inner membrane 
has been associated with a phenotype of massive and chronic free 
radical release [67].

Considering the brain of diabetic rats it has been found impaired 
thioredoxin response, decreased levels of SOD, and increased levels 
of GPX [68], confirming previous study in which hyperglycemia had 
induced inhibition of thioredoxin function by the action of p38-MAPK 
triggering of thioredoxin-interacting protein (Txnip), causing oxidative 
stress [69]. In rat experimental model of diabetes, hyperglycemic 
state had induced Txnip expression which has been implicated with 
increased inflammation and gliosis [70]. It has been suggested nitric oxide 
blocks expression of the Txnip improving thioredoxin activity [71].

This mechanism of Txnip inhibition of thioredoxin function 
associated with increased oxidative stress has also been demonstrated 
in glucose-exposed endothelial cells [72]. In the same manner, the 
inflammatory cytokine tumor necrosis factor-α (TNF-α) promotes 
insulin resistance through p38-MAPK pathway [73]. Beyond higher 
levels of TNF-α, other important inflammatory mediators (C-reactive 
protein and interleukins 6 and 8) were also increased among gestational 
diabetes mellitus patients [74]. TNF-α also causes activation of 
NFkB which mediates cell signaling through IKK-b inducing insulin 
resistance and coronary arteriolar dysfunction [75]. NFκB activation 
triggers potent inflammatory reactions found in acute pancreatitis, 
DM, metabolic syndrome, brain injury, Alzheimer’s disease, and 
diabetic nephropathy [76]. Into the cortex of the kidneys, NFkB 
activation was associated with increased expression of plasminogen 
activator inhibitor-1 (PAI-1) and enhanced expression of the 
intercellular adhesion molecule-1 (ICAM-1) which were associated 
with higher degree of renal inflammation in diabetic rats [77]. The 
activation of p38-MAPK pathway also impairs insulin action into the 
myocardium increasing free radical-mediated infarction [78]. Diabetic 
mice with abbrogated gene expression of the p38-MAPK had decreased 
levels of free radical production as well as lower degree of myocardial 
damage and apoptosis compared with normal gene expression mice 
[79]. Cardiomyocytes were protected against oxidative stress-induced 
hyperglycemic toxicity through inhibition of the p38-MAPK signaling 
pathway [80].

Another downregulator of the Txnip is represented by activation of 
the AMP-activated protein kinase (AMPK) which stimulates forkhead 
transcription factor 3 (FOXO3) inhibiting reactive oxygen species 
production [81]. This mechanism of AMPK activation has also been 
suggested to protect kidney tissues from diabetic rats [82].

In the same context, beta cells can adapt against free radical damage 
by expressing the nuclear-factor E2-related factor (Nrf-2) which 
triggers the expression of many different antioxidant genes, helping to 
rescue beta cells from the genotoxic free radical insults [67]. The Nrf-
2 induction leads to expression of antioxidant genes and attenuation 
of the NFkB inflammatory pathway protecting endothelium, the 
nephron, and other structures against hyperglicemic-load induced 
toxicity [83-86].

Other molecular regulator of free radical release in diabetes mellitus 
is represented by Rac proteins (Rac1-ubiquitously expressed, Rac2-
restricted to hematopoietic tissues, and Rac3-restricted to the central 

nervous system). These proteins are small Rho GTPases (Rac1, Rac2 
and Rac3) which can provoke endoplasmic reticulum stress and induce 
mitochondrial ROS production via NFκB and Akt signaling mechanisms 
[87]. This endoplasmic reticulum stress is mediated by NFκB, JNK, 
and p38MAPK pathways and operates the endothelial dysfunction 
in diabetes mellitus patients [88]. Another pathway of endothelial 
dysfunction in DM is represented by hyperhomocysteinemia, an 
independent risk factor for both cardiovascular and cerebrovascular 
diseases [89,90]. Excessive blood homocysteine has been implicated 
in massive oxidative stress and decreased plasma total antioxidant 
capacity which could be reversed by both antioxidant and L-arginine 
supplementation [91,92]. Hyperhomocysteinemia, a common feature 
in diabetes mellitus, has been associated with increased cardiovascular 
disease risk and polyneuropathy in DM patients [93-95].

In diabetic cardiomyopathy, hyperglycemia causes activation of 
Rac1 signaling disturbing endoplasmic reticulum and mitochondria 
resulting in free radical overload and myocardium cell death [96,97]. 
Under excessive levels of glucose, Rac1 activation induced expression of 
a cell surface lipid transporter, the CD36, which triggers mitochondrial 
dysfunction, oxidative stress and apoptosis of beta cells [98]. In the 
same study, inhibition of Rac1 abrogated the deleterious effects of 
high glucose on pancreatic beta cells. In fact, inhibition of Rac1 was 
associated with abrogation of membrane NADPH oxidase activity and 
suppression of free radical production [87,99].

Hyperglycemia also triggers activation of the Toll-like receptors-4 
(TLR4) in myocardiocytes membrane, a cell surface receptor responsible 
for pathogen recognition by the immune cells [100]. In this study, the 
inhibition of TLR4 blocks apoptosis, NADPH oxidase activity and free 
radical release in cardiomyocytes. The same mechanism is responsible 
for doxorubicin-induced myocardium toxicity [101]. Another study 
also demonstrated that blocking TLR4 signaling also rescue neuronal 
survival in diabetic rats [102]. Chronic triggering of TLR4 pathway 
induces both insulin resistance and amyloid beta deposition [103]. It 
has been suggested that TLR4 action is mediated by NFkB signaling 
pathway [104]. These complex prodiabetic and antidiabetic molecular 
mechanisms are represented in Figure 1.

Other important proteins involved in oxidative stress and 
mitochondrial dysfunction in diabetic experimental models include 
frataxin, duodenal homeobox factor-1 (PDX-1), MafA, and forkhead 
box protein O1 (FOXO1) [41].

Some important classic laboratory features of diabetes mellitus 
(hypercholesterolemia, hypertrygliceridemia, glycemia, arterial blood 
pressure, billirrubin, insulin resistance, creatinine, and C-reactive 
protein) are inversely associated with TAC, suggesting increased risk 
of atherothrombosis [105-109]. The unique DM biomarker that is 
positively associated with total antioxidant capacity is the uric acid 
[110,111], which has also been positively associated with DM risk and 
prognosis [111,112]. Increased uric acid levels have been pointed out 
to be the possible explanation for increased TAC levels in diabetic 
patients in some studies [32].

Total antioxidant capacity has a potential to be a diabetes 
diagnostics and therapeutics biomarker since it has been found to 
be normal or increased in controlled T2DM patients and reduced in 
uncontrolled and complicated T2DM subjects [44-48,53,54,62,65,113].

However, laboratorial evaluation of antioxidant capacity in diabetic 
patients should include the total antioxidant capacity test and other 
biochemical analysis listed in Table 1.
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Figure 1. Molecular roles of hyperglycemia in diabetes mellitus-induced pathophysiology.

Test Use/samples Comment
Total Antioxidant Capacity (TAC) Cells, tissues, blood, saliva, and urine Should be controlled regarding physiological changes
Superoxide dismutase (SOD) Same. It indicates oxidation Should be measured at different time intervals
Catalase (CAT) Same. It indicates antioxidant defense Should be measured at different time intervals
Lipid peroxides Same. The first products of lipid peroxidation Indicates only the inicial phase of lipid peroxidation
Conjugate dienes Same. The first products of lipid peroxidation Same as above.
Malonaldehyde Same. The final product of lipid peroxidation. Could react with other compounds, yielding false results
Glutathione (GSH) and Glutathione Peroxidase (GPX) Same. Indicate cell antioxidant defense
Glycated Hemoglobin (HBA1C) Blood Specific marker of oxidation in diabetic patients

Table 1. Laboratory examination of antioxidant-oxidant balance in diabetic patients.

Drinking of sulphurous water could decrease oxidative stress and 
improve the glycemic values in diabetes mellitus [114].

Beyond impairment of the antioxidant defenses, DM causes 
molecular dysfunctions that can be targeted for development of newer 
therapeutic and preventive strategies like dietary intake of antioxidant-
rich foods and exercise training [14,115-124].
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