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Five (α-, β-, δ, PP-, and ε) subtypes of endocrine cells are located 
closely within the pancreatic islets of Langerhans and they are 
responsible for the production and release of specific hormones that 
regulate glucose levels. Among these endocrine cells, α- and β-cells 
are mostly studied as they operate cooperatively under physiological 
conditions, secreting the ‘counter-regulatory’ hormones glucagon and 
insulin respectively thus ensuring normoglycaemia. Autoimmune 
destruction of the β-cells results in type 1 diabetes mellitus (T1D) 
because of a significant decline of insulin production. Intriguingly, in 
patients [1] and animal models [2] with recent-onset T1D, a significant 
increase in α-cells (α-cell hyperplasia) appears within pancreatic islets. 
However, treating T1D mice with insulin neither protects against β-cell 
loss nor inhibits α-cell proliferation [3]. The mechanisms underlying 
α-cell hyperplasia in recent-onset T1D has long been unclear. 

Gamma-aminobutyric acid (GABA), a well-known inhibitory 
neurotransmitter is widely utilised as a signalling molecule by cells 
outside the central nervous system, including pancreatic β-cells [4-6], 
immune cells [7] and epithelial cells in the intestine [8], the lung [9-
11] and the liver [12,13]. Unlike neurons, pancreatic β-cells produce 
GABA mainly through a pathway referred to as the GABA shunt [14], 
a closed-loop metabolic process occurring in mitochondria with the 
dual purpose of producing and conserving the supply of GABA. The 
GABA shunt starts with the transamination of α-ketoglutarate formed 
from glucose metabolism via the tricarboxylic acid cycle, by GABA/
α-oxoglutarate transaminase, into L-glutamic acid. The latter is then 
catalyzed into GABA by decarboxylation via the enzymatic activity 
of glutamic acid decarboxylase (GAD). Early studies showed that the 
β-cells express GAD and produce GABA. In addition, type A GABA 
receptors (GABAARs), a class of ligand gated chloride channels, are 
expressed in both β- and α-cells [4,15,16]. Because of the disparity in 
expression levels of Cl ̶ -intruding and chloride-extruding transporters, 
the intracellular Cl ̶ concentration is high in β-cells but low in β-cells 
[17,18]. As a result, stimulation of GABAARs in the β-cells causes Cl ̶ 

efflux and membrane depolarisation, increasing Ca2+ entry and insulin 
secretion [4,15,19], whereas activation of GABAARs in α-cells results in 
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A significant increase in pancreatic α-cells is observed in patients and animal models with recent-onset type 1 diabetes (T1D). Our recent studies suggest that the 
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deficiency.

Cl ̶ influx and membrane hyperpolarisation, decreasing Ca2+ entry and 
glucagon release [16,20]. 

We recently explored whether GABA, as a paracrine factor, 
regulates α-cell proliferation using a mouse model with streptozotocin 
(STZ)-induced T1D [21]. We demonstrated that intraperitoneal STZ 
causes a rapid decline of GAD and insulin in β-cells, which is followed 
by elevated mTOR activity in α-cells (glucagon+) 1 day after STZ and 
increased Ki67+/glucagon+ cells 2 days after STZ. By two weeks after 
STZ, a significantly increased α-cell mass appears in pancreatic islets, 
in which the GAD+/insulin+ cells decreases while the ALDH1a3+/
insulin+ cells increases. Cells expressing high levels of ALDH1a3 
display progenitor/stem cell-like features. Excitingly, treating the STZ-
injected mice with GABA not only significantly reduces ALDH1a3+/
insulin+ cells and increases the GAD+/insulin+ cells, but also prevents 
α-cell hyperplasia and hyperglucagonaemia. These findings suggest 
that in normal pancreatic islets, the autocrine GABA protects β-cell 
from injuries and/or phenotypic dedifferentiation while the paracrine 
GABA inhibits α-cell proliferation. Whereas, in early-onset T1D the 
increased α-cell proliferation might be initiated by a decline in the 
paracrine factor GABA and/or insulin, as a result of β-cell loss. 

To explore whether the paracrine factor GABA or insulin restrains 
α-cell proliferation, we tested the effect of the selective GABAAR agonist 
muscimol and insulin, respectively, on proliferation of αTC1-6 cells, 
a widely used mouse pancreatic α-cell line. Our assays showed that 
muscimol alone has no effect on αTC1-6 cell proliferation while insulin 
significantly increases αTC1-6 proliferation as previously reported 
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[22]. Remarkably, muscimol effectively prevents αTC1-6 proliferation 
in the presence of insulin. Given that insulin increases GABAARs on 
the surface of αTC1-6 cells [16], we propose that under physiological 
conditions, insulin maintains GABAARs on α-cells, where GABA, via 
GABAARs, retains α-cell proliferation. 

How does the paracrine GABA signalling restrain α-cell 
proliferation? The Ca2+-dependent activity of mTOR upregulates 
the proliferation and renewal of pancreatic endocrine cells [22,23]. 
Activation of GABAARs hyperpolarises α-cells [16] hence decreases 
voltage-gated Ca2+ channel activity. Indeed, our Ca2+-imaging analyses 
show that GABA significantly lowered cytosolic Ca2+ of αTC1-6 cell. 
In addition, our immunoblotting assays showed that insulin increases 
the levels of p-mTOR and its downstream kinase p-P70S6K in αTC1-6 
cells, whereas these effect of insulin are blocked by muscimol. Together, 
these data suggest that activating GABAARs reduces Ca2+ entry and 
lowers mTOR activity in α-cells hence inhibiting their proliferation. 

On the basis of available data, we propose that in normal pancreatic 
islets, insulin signalling maintains a stable expression of GABAARs on the 
surface of α-cells, whereas GABA, through GABAARs, keeps these cells 
hyperpolarised hence restraining their cytosolic Ca2+, mTOR activity 
and proliferation. Under conditions of T1D, however, severe β-cell loss 
and/or β-cell “dedifferentiation” result in a decline in intraislet insulin 
and GABA causing α-cell hyperplasia. Administration of GABA to 
rodents with STZ-induced diabetes facilitates β-cell generation [15] and 
prevents α-cell proliferation [21] hence improving glucose tolerance. 
Severe β-cell injury/loss induces α-to-β cell transdifferentiation [24]. In 
this regard, a recent study demonstrated that long-term stimulation of 
GABAARs facilitates α-to-β cell transdifferentiation in normal mice by 
regulating Pax4 expression [25]. The issue as to whether GABA inhibits 
α-proliferation but enhances α-to-β cell transdifferentiation in T1D 
conditions remains to be addressed by future studies.
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