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Abstract
Insulin-like growth factor-I receptor (IGF-IR) and its signaling pathways play an important role in cell proliferation, growth, differentiation and survival. IGF-axis 
controls cellular, physiological and metabolic activity of several cell types including cardiomyocytes. IGF-I acts through its signaling receptor- IGF-IR to induce 
physiological or adaptive hypertrophic growth. Various reports also confirm that it protects the heart against pathological insults. Furthermore, deregulation of IGF-I 
signaling has also been shown to be involved in the development of pathological hypertrophy. Although it would be beneficial to activate the IGF-I–PI3-K pathway 
to enhance cardiac function during pathological conditions it could be detrimental in case of cancer. Based on currently available literature this mini review will focus 
on the recent advances of drug and delivery systems that specifically target IGF-I signaling for promoting physiological hypertrophy and improving cardiac function.

Abbreviations: Insulin-like growth factor-I (IGF-I); Insulin-like 
growth factor-I receptor (IGF-IR); Mammalian target of rapamycin 
(mTOR); 4E binding protein1 (4EBP1); local IGF-1 isoform (mIGF‐1); 
(PI3K)-AKT/PKB phosphatidylinositol 3-kinase-Akt/Protein Kinase 
B; Insulin receptor (IR); MicroRNAs (miRs); Ribosomal S6 kinases 
(S6Ks)

Introduction
IGF-I, a 70 amino acid single chain protein is synthesized primarily 

in liver, but the local production in other tissues mediates growth-
promoting effects by autocrine or paracrine mechanisms [1,2]. A 
large number of studies have described the presence and distribution 
of IGF’s and IGF receptors in heart [1-3]. In cardiomyocytes, IGF-I 
activates multiple downstream signaling pathways for controlling 
cardiomyocyte survival, autophagy, apoptosis, differentiation, and 
protein synthesis [1,2]. Other diverse physiological roles of this ligand 
(IGF-I) receptor family in heart include energy balance, metabolism of 
glucose, carbohydrate and protein [2,4].

Heart growth often referred to as cardiac hypertrophy can 
broadly be classified as pathological or physiological [5]. Pathological 
cardiac hypertrophy occurs in response to hypertension, myocardial 
infarction, valvular heart disease and is associated with accumulation of 
collagen, depressed cardiac function and heart failure [6,7]. In contrast, 
physiological hypertrophy includes heart growth in response to 
chronic exercise training and is associated with preserved or enhanced 
cardiac function [8,9]. This difference in outcome of pathological and 
physiological cardiac hypertrophy is due to different stimuli leading to 
the activation of distinct signaling transducers [5,9-11]

To date, the best characterized pathways playing distinct roles 
for induction of pathological and physiological hypertrophy are 
Gaq and insulin-like growth factor (IGF) –I –phosphoinositide-3 
kinase (PI3-K; p110α), respectively [5]. Several reports have shown 

that chronic exercise training such as running, walking, cycling and 
swimming elevates IGF-I levels and subsequent activation of IGF-
IR leads to physiological cardiac hypertrophy [6,12,13]. Conversely, 
Ang II, ET-1 and noradrenaline are secreted from cardiomyocytes 
during mechanical stress and the signal is transduced by binding to Gq 
protein-coupled receptors (GPCR). Gq mediates pathological cardiac 
hypertrophy via downstream effectors like calcineurin and (mitogen-
activated protein kinases (MAPK); extracellular signal regulated 
kinases 1 and 2 (ERK1/2), JNK, P38) [5,9].

IGF-I signaling cascade mediated physiological cardiac 
hypertrophy

It is now well established that IGF-I plays an important role in 
the regulation of post-natal heart size and cardiac function [9,10,14]. 
IGF-I is primarily produced in liver and to a lesser extent locally in 
heart [2]. Exercise induces cardiac expression of both IGF-I and its 
receptor IGF-IR [13-15]. IGF-I levels are found to be elevated in both 
swim-trained rats and athlete’s heart compared to control subjects [5]. 
Activation of IGF-IR (receptor tyrosine kinase) leads to physiological 
cardiac hypertrophy in mice characterized by 35–40% increase in heart 
size and enhanced systolic function [2,9]. Again, mice with cardiac 
specific ablation of the IGF-IR gene are resistant to exercise-induced 
increases in heart size [15,16]. IGF-I in heart via IGF-IR activates 
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established [9,10]. This largely explains the interest regarding the use 
of new agents that block pathological hypertrophy in conjunction 
with IGF-I-based treatments that promote physiological cardiac 
growth and improve contractile function [14]. IGF-I deficiency 
is found to be associated with an elevated risk of cardiovascular 
disease and its progression in both human and animals [1]. So far, 
mecasermin (IncrelexR); a human recombinant IGF-I analog and 
mecaserminrinfabate (IPLEXR); a binary protein complex of human 
recombinant IGF-I and human recombinant IGBP-3, are two IGF-
I-based treatments available for improvement of cardiac function 
during IGF-I deficiency [1]. Few clinical trials have shown that 
Growth Hormone (GH) administration leads to improved cardiac 
performance in patients with impaired cardiac function [2]. It has been 
further confirmed that patients whose IGF-I level fails to increase in 
response to exogenous GH administration do not benefit from GH 
treatment.  Results further revealed that IGF-I level increased by >89% 
would significantly improve cardiac performance, echocardiographic 
parameters and exercise capacity in patients compared to patients with 
IGF-I increase by <89% following exogenous GH administration [2]. 
Few reports have clearly shown that persistent local IGF-I expression 
in the heart results in physiological cardiac hypertrophy at early time 
points [14,27]. Also, short term administration of IGF-I is beneficial in 
improving cardiac function [14]. Transgenic mice overexpressing IGF-I 
receptors (IGF-IR) in cardiomyocytes also shows physiological growth 
of the heart [14]. In addition to induction of physiological hypertrophy, 
IGF-I–PI3-K pathway is also activated in some pathological models as 
a protective mechanism [5]. In the recent years, evidences have been 
mounting on the attempts made to selectively overexpress IGF-I and 
IGF-IR in the heart. One research group showed that local IGF-I 
isoform (mIGF‐I) protects cardiomyocytes from hypertrophic stress. It 
was further shown that potent cardio‐protective genes are upregulated 
specifically in mIGF‐1‐overexpressing cardiomyocytes. Based on these 
observations it could be postulated that mIGF‐1 might be a promising 
cardiac therapeutic against hypertrophic stress [27].

Several biological processes controlling cardiac function are 
regulated by miRNA’s and IGF-I. Hence miRNA’s mediating the 
effects of IGF-I pathway could serve as potential therapeutic agents for 
cardiac hypertrophy [24,28,29]. 

IGF-I/IGF-IR pathway is well recognized for its role in various 
cancers [30]. Although activation of IGF1-PI3K (p110α) pathway 
by chronic systemic IGF-I therapy, miRs’s or miRs-targeting 
oligonucleotides, would be beneficial for heart it could lead to 
uncontrolled proliferation of other cell types ultimately leading to 
cancer [10,30]. Again, excess of IGF-I signaling may also trigger 
cardiac dysfunction [24]. Hence local versus systemic effects of IGF-I 
administration must be elaborately evaluated [31]. More works are 
also needed to address the issues associated with the outcomes of 
quantitative versus qualitative differences in exposure of pathological 
and physiological stimuli [4]. Furthermore, it has been shown Insulin 
receptor (IR) and IGF-IR are structurally similar and once activated 
can phosphorylate same downstream signaling. Reports are also 
available about Hybrid receptors that are formed between IGF-IR and 
IR in several tissues [16]. Although it is known that IGF-IR and not IR 
signaling is an important regulator of exercise-induced physiological 
cardiac hypertrophy yet more studies are required to understand 

phosphoinositide kinase-3 - PI3K (p110α) and its downstream target 
Akt1 (Protein Kinase B). Both PI3K and AKT are identified to be 
essential for induction of physiological heart growth [5,9]. It has 
been shown that mice with constitutively active PI3K (110α) exhibit 
significantly increased heart mass and are also protected from heart 
failure after pathological stress [9,17]. In contrast, mice with cardiac 
expression of a dominant negative PI3K (110α) respond to pressure 
overload instead of swimming exercise [4,14]. Similarly, Akt1-knockout 
mice showed a blunted hypertrophic response to swim training but not 
to pressure overload  [18]. Downstream targets of activated Akt are 
mammalian target of rapamycin (mTOR) which suppresses autophagy 
and promotes protein synthesis by activating S6K and eukaryotic 
translation initiation factor 4E binding protein 1 (4EBP1) [5,13]. The 
activity of S6K1 has been shown to be elevated in transgenic models of 
physiological hypertrophy [5]. 

miRs involved in the IGF-I-PI3K-Akt pathway in heart
MicroRNAs (miRs) are important endogenous post-transcriptional 

regulators of gene expression involved in regulation of various disease 
and development processes. Since 2005, lot of exciting research 
has come up on the biological roles of miRs in the mammalian 
cardiovascular system [19]. Extensive genome-wide profiling of miRs 
has shown significant changes in expression of many miRs during 
physiological, pathological cardiac hypertrophy and heart failure [19-
21]. Here we have highlighted miRs that are involved in the IGF-I-
PI3K-Akt signaling pathway in heart.

miR-1, the most abundant of all miRs in heart plays a key role 
in determining cardiomyocyte morphology and function [20,22]. As 
evident from luciferase activity Assays, 3′UTR sequence of IGF-I has 
only one potential MiR-1binding site [20,23]. miRs -1 and -133a have 
been shown to abrogate IGF-I induced hypertrophy. This suggests 
requirement for miR-1 and miR-133a downregulation in IGF-I 
induced physiological hypertrophy [22]. Both of these miR’s have been 
shown to be down-regulated in exercised trained rats and cardiac-
specific Akt transgenic mice, which are models of physiological cardiac 
hypertrophy [24].

Interestingly few reports have shown IGF-I not only is a target 
of miR-1but miR-1 expression also depends on IGF-I [20,24]. In 
neonatal cardiomyocytes, IGF-I treatment significantly repressed miR-
1 expression.  IGF-I, through activation of the PI3K/AKT signaling 
pathway and repression of its downstream transcription factor Foxo3a 
silences miR-1. Further detailed research on this unique miR-1/IGF-I 
regulatory loop will help us understand in future the importance of 
IGF-I-mediated effects on cardiac hypertrophy and heart failure [25].

Another miRNAs which is abundantly induced in heart during 
stress is miR-378. According to one study, ligand IGF-I acts as an 
inhibitor of miR-378 expression in heart. The report further showed 
miR-378 inhibits IGF-I mediated activation of AKT by directly targeting 
IGF-IR thereby providing resistance to cardiomyocytes against stress-
mediated cell death. Hence inhibition of miR-378 would perhaps be 
beneficial for the survival of cardiomyocytes during compromised 
heart function. However, its effect on cardiac hypertrophy is not yet 
reported [26].

IGF-I based treatments and challenges
The importance of the IGF-I pathway in cardiac function is well 
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the effect of cardiac specific IGF-I/IGF-IR overexpression on IR and 
IGF-IR/IR- hybrid receptors [15,16]. IGF-I is known to be a marker 
in cancer and other diseases. But in spite of being elevated, it is not 
considered to be a good biomarker for the athlete’s heart [1,9,12]. 
Despite few reports on targeted delivery of oligonucleotides, poor 
bioavailability, limited tissue permeability, potential drug resistance 
and instability still remain major challenges till date [28]. Recently, one 
report on a novel cardiomyocyte targeted nano-construct promises 
to be a potential clinical tool and provide a solution to some of these 
challenges [32]. 

Conclusion
Cardiac hypertrophy is one of the important cardiovascular 

problems throughout the world [6]. Substantial progress has been made 
in the understanding of signaling pathways mediating physiological 
and pathological hypertrophy. While exercise induces physiological 
heart growth mechanical stress due to pressure overload leads to 
pathological hypertrophy [9]. Pathological hypertrophic characters 
are also evident after withdrawal from regular exercise training [33]. 
It would be interesting to address in future whether IGF-IR pathway 
plays any crucial role in the onset of pathological hypertrophy after 
withdrawal from exercise training. Exercise induces physiological heart 
growth via activation if IGF-I-PI3-K pathway [9]. Since many patients 
are unable to exercise, therefore understanding of the pathways that 
mediate exercise induced benefits, learning to manipulate them in 
vivo and providing solution to existing challenges as discussed could 
yield novel therapeutic approaches to improve cardiac function during 
pathological hypertrophy [4].
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