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Abstract
Since it is known that relapse, morality, and hospitalizations have been tied to the presence of the Dopamine D2 Receptor A1 allele, as one example, and carriers 
of this gene variant have a proclivity to favor amino-acid therapy, it seems intuitive that the incorporation of modalities to provide a balance and or restoration of 
hypodopaminergia should be considered as a front-line tactic to overcome the current American opiate/opioid epidemic, saving millions from death and unwanted 
locked-in-addiction. If we continue down the prim road path of fighting addiction to narcotics with narcotics, we are doomed to fail. This lesson can also have global 
interest. 
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Introduction
Addiction to psychoactive drugs poses a significant threat to the 

health of the social and economic fabric of families, communities, and 
nations. The number of substance users is staggering. The annual United 
States National Survey on Drug Use and Health (NSDUH) estimated 
that in 2013, approximately 24.6 million Americans aged 12 or older 
used illicit drugs in the past month (Substance Abuse and Mental 
Health Services Administration [SAMHSA], 2014) [1]. This problem 
urgently requires the development novel treatments for addiction and 
advanced methods to evaluate the efficacy of potential therapeutic 
agents. Developing treatments based on well-known biosynthetic 
pathways that regulate central dopamine (DA) systems involved in 
mediating rewarding experiences is a major challenge. To curtail 
psychoactive drug abuse and dependence, the United States Food and 
Drug Administration (FDA) approved several pharmaceutical agents 
collectively known as Medication Assisted Treatment (MAT) [2]. It is 
noteworthy that these agents have helped a portion of patients over the 
years; however, they have not fully prevented drug craving and relapse. 
The limited success of treating psychoactive substance abuse with 
current modalities leaves open the need to develop new therapies [3-6]. 

Attention must be focused on the recent changes to the current 
United States law that now limits physicians who prescribe 
buprenorphine for the detoxification or management of Opioid 
Use Disorder, to treating a maximum of 275 patients. However, the 
present structure does not deliver complete management as defined 

by the American Society of Addiction Medicine’s (ASAM) criteria. 
The system also experiences both division and stigma and will need 
a substantial transformation to observe ASAM’s request for unified 
delivery of addiction treatments. In a recent article [7]. Blum’s group 
called for an increase in the patient limit and treatment prescriptions 
to be limited only to physicians who are Board Certified in Addiction 
Medicine by the American Board of Addiction Medicine (ABAM) 
or in Addiction Psychiatry by the American Board of Psychiatry and 
Neurology (ABPN), or additional responsible clinical institutions. 
Such organization would include treatment integration, treatment 
structures, and recovery with the aid of prescription medications. 
Furthermore, it should supervise emotional blunting, treatment 
improvements, and the introduction of genetic addiction risk testing.

After money or after care? 
There are an estimated 14,500 institutions and programs in the 
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United States that deliver treatment for all inclusive addictive behaviors 
under the term, “Reward Deficiency Syndrome (RDS)” [8]. While many 
of these clinical organizations have respectable intentions of delivering 
much needed aid to those who suffer from RDS, we offer, herein, that a 
majority of their efforts, particularly during aftercare, are not founded 
on existing scientific outcomes [9-12]. We use the term “aftercare” 
to denote any type of program or therapy after principal treatment, 
including 12-step programs [13]. In this trieste, we are proposing that 
a hypodopaminergic trait (genetic) and/or state (epigenetic) is serious 
in considering prolonged impulse to use/abuse alcohol or other drugs, 
which can ultimately lead to relapse. 

While there is support for FDA-approved drugs to treat drug 
addiction (e.g., alcohol, opiates, nicotine), these drugs support only 
short-term assistance via blocking dopamine [14]. We, the authors, 
contend for the application of long-term assistance, which stimulates 
“dopamine homeostasis” or in other words, promotes “normalcy.” 
We propose that this approach could be achieved through several 
holistic methods including, but not limited to, dopamine-enhancing 
diets, hyper-oxygenation, toxic heavy metal detoxification, exercise, 
meditation, yoga, and most notably, balancing brain neurotransmitters 
utilizing nutraceuticals (i.e., KB220 variants). We certainly embrace 
12-step programs and fellowships, but with caution, as they are not a 
stand-alone method, specifically during aftercare. 

It is significant that there is a developing scientific foundation 
for the explanation of the importance of resting-state functional 
connectivity (rsFC) and its involvement in RDS treatment [15]. It 
has been established that drugs, food, smoking, gambling, and even 
compulsive sexual behavior reduce rsFC [16]. Thus, we must ask the 
treatment community to consider potential brain reward circuitry 
restoration to repair this damaged crosslink between different brain 
areas (e.g., nucleus accumbens (NAc), cingulate gyrus, hippocampus, 
etc.) to be incorporated into the aftercare plan in all treatment 
programs in America. Anything less will ultimately lead to the so-called 
“revolving door” for as many as 90% of treatment participants.

A molecular neurobiological aspect 
Based upon neurochemical and genetic support, we propose that 

both prevention and treatment approaches of addiction (i.e., alcohol, 
nicotine and glucose), should encompass a biphasic methodology 
[17]. Hence, acute treatment should involve preferential blockage 
of postsynaptic NAc dopamine receptors (D1-D5), while long-term 
stimulation of the mesolimbic dopaminergic network should trigger 
and/or release Dopamine (DA) at the NAc site [17]. The inability to 
do so will affect mood, behavior, and possible suicide ideation. Persons 
with a lack of serotonergic and/or dopaminergic receptors, and an 
amplified rate of synaptic DA catabolism due to the catabolic genotype 
of the COMT gene, are susceptible to self-medicating with substances 
or behaviors that stimulate DA discharge, such as alcohol, opiates, 
psychostimulants, nicotine, gambling, sex, and even extreme internet 
gaming [18]. These substances and/or behaviors provoke feelings of 
well-being. Unfortunately, sustained and prolonged abuse leads to a 
toxic “pseudo feeling” of well-being, causing disease or discomfort. 
Thus, a decrease in DA receptors due to the DRD2 A1 allelic genotype 
[19] (30-40% less D2 receptors), results in excessive craving behavior; 
whereas, a normal or sufficient amount of DA receptors results in low 
craving behavior [20].

In considering the prevention of substance abuse, one potential 
objective would be to prompt production of DA D2 receptors in 
genetically pre-disposed persons. While in vivo experiments utilizing 

a standard D2 receptor agonist produce down-regulation, experiments 
in vitro have shown that continuous activation of the DA receptor 
network via a known D2 agonist causes substantial production of D2 
receptors, despite genetic antecedents [21]. In essence, D2 receptor 
stimulation signals negative feedback mechanisms in the mesolimbic 
system to induce mRNA expression causing proliferation of D2 
receptors. 

Proposal: A integrated system approach 
The authors suggest that D2 receptor activation can be achieved 

through the utilization of a biological, but therapeutic, nutraceutical 
formulation that possibly stimulates DA discharge, affecting the 
similar stimulation of D2-directed mRNA and thus, production of 
D2 receptors [22]. This production of D2 receptors will stimulate the 
reduction of craving behaviors [23]. Indeed, as previously mentioned, 
this method has been established in the literature, showing DNA-
directed compensatory overexpression (a type of gene therapy) of the 
DRD2 receptors, causing a substantial decrease in alcohol cravings 
in alcohol-seeking rodents [24] and cocaine self-administration [25]. 
Using natural dopaminergic repletion therapy to encourage long-term 
dopaminergic stimulation will lead to a common, safe, and efficient 
method to treat all types of Reward Deficiency Syndrome (RDS) 
behaviors (i.e., Substance Use Disorders [SUD], Attention-Deficit/
Hyperactivity Disorder [ADHD], obesity, and other reward deficient 
aberrant behaviors) [26]. This theory is additionally supported by the 
more inclusive comprehension of the function of dopamine in the NAc 
as a “wanting” courier in the meso-limbic DA network [27].

Understanding dopaminergic tone in RDS
It is uncertain whether or not attention-deficit/hyperactivity 

disorder (ADHD) is a hypodopaminergic or hyperdopaminergic 
disorder. Various sets of data intimate ADHD as either a hyperactive or 
hypoactive dopamine network. While indirect approaches utilized in 
previous research have reached contradictory conclusions, Badgaiyan 
et al. [28] directly measured the tonic and phasic discharge of 
dopamine in ADHD subjects. The tonic release in ADHD and control 
subjects was measured and compared utilizing a dynamic molecular 
imaging technique. The phasic discharge during the performance of 
Eriksen’s Flanker Task was measured in the two sets using a single scan 
dynamic molecular imaging technique. In these experiments, subjects 
were placed in a positron emission tomography (PET) camera and 
dispensed a dopamine receptor ligand [11] C-raclopride intravenously. 
Following the injection, PET data were obtained dynamically, while 
subjects either remained still (tonic release experiments) or completed 
the Flanker Task (phasic release experiments). PET data were evaluated 
to measure dynamic variations in ligand binding potential (BP) and 
other receptor kinetic factors. The evaluation discovered that at rest, 
the ligand BP was considerably increased in the right caudate of ADHD 
subjects, signifying decreased tonic release. During task performance, 
considerably lower ligand BP was detected in the same region, 
representing increased phasic release. In ADHD, and potentially all 
RDS behaviors, tonic release of dopamine is decreased and the phasic 
release is augmented in the right caudate. By depicting the nature of 
dysregulated dopamine neurotransmission in ADHD, the outcomes 
elucidate previous findings of decreased or increased dopaminergic 
functioning, indicating hypodopaminergia in RDS. 

Neurochemical mechanisms and clinical relevance of 
pro-dopamine regulation  

We are suggesting that the utilization of a Pro-Dopamine Regulator, 



Blum K (2016)  “Pro-dopamine regulation (KB220Z™)” as a long-term therapeutic modality to overcome reduced resting state dopamine tone in opiate /opioid 
epidemic in America

J Syst Integr Neurosci, 2016        doi: 10.15761/JSIN.1000129  Volume 2(3): 162-165

like KB220Z, naturally mirrors the established Brain Reward Cascade 
(BRC) [29] whereby, serotonin in the hypothalamus stimulates 5HT2a 
receptors to induce the release of enkephalins in the hypothalamus. 
Delta and mu receptors inhibit GABA in the Substania Nigra (GABA 
A receptors), whereas GABA B receptors regulate the Glutaminergic 
pathway at the Raphe Nuclei site through MNDA receptors projecting 
to the Ventral Tegmental Area (VTA). The VTA fine-tunes the correct 
quantity of dopamine to be released at the NAC into the synapse to 
stimulate nine receptors, whereby D1 and D2 are the major receptors. 
This process provides for enhanced well-being (reward and pleasure) 
and anti-stress (blocking unwanted pain related stress up-regulated 
molecules such as norepinephrine, corticotropin releasing factor, 
vasopressin, hypocretin, and substance P) [30-35]. Neuroimaging 
studies in both humans and rat models have shown that KB220z 
increases resting state functional connectivity in a default putative 
network as well as the recruitment of dopamine firing in selective brain 
reward regions, leading to reduced dopamine deficiency, homeostasis, 
and reduced opiate/opioid craving [36,37] One other important 
aspect is that in double-blind human studies, the variant KB220 has 
been shown to block stress in addicted patients measured via skin–
conductance, significantly enhancing well-being, and preventing 
relapse to psychoactive drugs of abuse including heroin [38,39]. 

Conclusion
Since it is known that relapse, morality, and hospitalizations have 

been tied to the presence of the Dopamine D2 Receptor A1 allele, [40] 
and carriers of this gene variant have a proclivity to favor amino-acid 
therapy, [29] it seems intuitive that the incorporation of modalities to 
provide a balance and/or restoration of hypodopaminergia should be 
considered as a front-line tactic to overcome the current American 
opiate/opioid epidemic, potentially saving millions from death and 
unwanted locked-in-addiction.  If we continue down the prim road 
path of fighting addiction to narcotics with narcotics, and not consider 
the importance of reward deficiency and anti-reward, we are doomed 
to fail [41]. 
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