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The extracellular matrix (ECM) provides the three-dimensional 
structure of tissues, and is required for cell homing and cell viability, 
as well as for the overall homeostasis of tissues and organs [1,2]. The 
dynamic and complex microenvironment that the ECM generates in a 
specific manner for each tissue guarantees its functions [1,2]. During 
tissue regeneration ECM has been shown to play an essential role in 
controlling the tissue-stem cell compartment and to be involved in tissue 
regeneration outcome [3-6]. Tissue engineering combines extracellular 
natural and/or synthetic scaffolds (biomaterials) with stem cells and 
growth factors for the development of regenerative medicine strategies 
and the treatment of diseased tissues [7]. Despite the fact that incredible 
improvements have been achieved in biomaterial manufacturing, the 
peculiar and complex biochemistry, biomechanics and 3D organization 
proper of a tissue-specific ECM still cannot totally be reproduced in the 
lab [1,2,8]. Such complexity can however be preserved in scaffolds that 
take advantage of the native tissue themselves, as decellularized tissues 
or whole organs [9-11]. Decellularization process remove cellular and 
nuclear content retaining ECM mechanical integrity, biological activity 
and 3D architecture of the native tissue [10]. Decellularized tissues 
and/or organs represent alternative and promising scaffold material 
for the treatment of clinical cases in which extensive regeneration of 
an organ is required, as in cases of traumatic injuries, surgical ablation 
and congenital diseases [12]. Decellularized scaffolds have already been 
obtained from different organs and used for regenerative medicine 
strategies in animal models, as well as in clinical trials [12,13]. Ideally 
scaffold implantation should allow regeneration of the tissue of interest 
and guarantee the functionality of the targeted organ. In particular, 
support in reinnervation is a crucial aspect for the final outcome of 
tissue functionality in those organs in which the nervous system plays 
pivotal roles (i.e. muscle, heart, sensory organs). Here we will summarize 
the state of the art regarding the possible use of decellularized scaffolds 
for spinal cord and peripheral nervous system (PNS) regeneration, and 
tissue reinnervation.

Despite the ability of PNS to maintain a grade of regeneration 
after injury, central nervous system (CNS) axons do not regenerate 
appreciably in their native environment [14-16]. In PNS, after a nerve 
transection, macrophages and Schwann cells clear myelin and axonal 
debris, and produce cytokines that enhance axon growth [17,18]. 
After debris clearance, regeneration begins at the proximal end of 
the damage and continues toward the distal stump with a section of 
new tissue known as ‘the bridge’ and is composed of inflammatory 
cells, perineurial cells, fibroblasts and ECM [14,18]. For the complete 
functional reinnervation of the organs, axons have to extend until they 
reach their distal target [15]. This requires the formation of cellular 
cords of Schwann cells (dedifferentiated to progenitor-like cells) 
and fibroblasts, which transport the axons across the bridge along 
the surface of polarised blood vessels [14]. Differently, when CNS 
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undergoes injury the regeneration capability is inhibited by the blood-
spine barrier, which reduce the infiltration of macrophages at the site of 
injury, delaying the removal of inhibitory myelin and resulting in a glial 
scar formation [15]. However, in case of a severe injury the regeneration 
of spinal cord, or PNS or tissue innervation fails [15,16].

To develop new strategies for spinal cord and PNS regeneration, 
natural or artificial synthetic materials have been extensively used 
[19-24], and spinal cord biocompatible decellularized scaffolds were 
first obtained in 2010 [25]. Liu and colleagues provided evidence that 
decellularized spinal cord scaffolds seeded with human umbilical cord 
blood-derived mesenchymal stem cells (hUCB-MSCs) are able to bridge 
a spinal cord cavity and promote long-distance axon regeneration 
and functional recovery in a spinal cord injury (SCI) rat model [26]. 
This study supports the hypothesis that decellularized spinal cord 
can provide a favourable environment for host oligodendrocyte 
differentiation, proliferation and axonal remyelination, which promotes 
endogenous regeneration of neural cells [26]. However, the influence 
of hUCB-MSCs, which secrete a number of cytokines useful for SCI 
recovery [27], in the general outcome of the regeneration was not 
clear. More recently, the ability of decellularized spinal cord to promote 
regeneration per se (without pre-seeding cells) has been demonstrated 
[28,29]. Scaffolds provided the right topography and direction for nerve 
axon regeneration of removed T9-T10 cord segments in rats, with 
improvement in locomotor function compared to the untreated SCI 
group [28]. Xu and collaborators also showed how decellularized spinal 
cord can be used in combination with trophic factors to improve the 
regenerative properties of the implanted matrix [29]. Remarkable results 
in terms of functional recovery in SCI models have been obtained also 
using injectable decellularized extracellular matrix derived from brain 
[30], meninges [31] or peripheral nerve [32]. 

Decellularized nerves have also been used in animal models [33] 
and for clinical application [34]. In sciatic nerve replacement rat 
models, decellularized nerves promoted axonal regeneration and motor 
function recovery [35]. Interestingly, bone marrow-mesenchymal 
stromal cells (BM-MSCs) embedded in fibrin glue and injected around 
the graft helped to improve nerve regeneration and functional recovery 
[35]. Importantly, clinical application of a commercial decellularized 
nerve graft (AxoGen®, AxoGen Inc, Alachua, FL) showed promising 
results. Patients with digital nerve defect showed no signs of infection 
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or rejection after decellularized nerve implantation, and reported 
sensory improvement in a follow-up study [36].

The ability of decellularized scaffolds to promote in vivo 
regeneration of neuronal compartment in innervated tissues has 
been investigated in different organs and by using scaffolds derived 
from several sources. Decellularized small intestinal submucosa (SIS) 
scaffolds used to repair esophagus [37] and bladder [38] defects (in 
rats and canine models respectively) allowed de novo innervation of 
regenerated implants. Importantly, in the esophagus it was shown that 
decellularized SIS scaffolds promoted regeneration of synaptic active 
area, with functional activity of the tissue characterized by contractile 
responses to nerve stimulation [37]. Typical features of amyelinic fibers 
being surrounded in groups by single Schwann cells were identified 
in decellularized heart valves in pig models of valves transplantation 
[39]. Decellularized cornea scaffolds promoted active reinnervation of 
the implant by the host cells, as confirmed by the presence of multiple 
nerve filaments 4 months after transplantation [40].

Considering the essential role of the nervous system in skeletal 
muscle function, a number of studies investigated with more detail 
the ability of implanted decellularized scaffolds in supporting axon 
invasion. We recently showed that two months after implantation in 
mouse, a decellularized muscle xenograft promoted tissue regeneration 
in a volumetric muscle loss mouse model, which included neuronal 
compartment and active neuromuscular junction [41]. In agreement 
with this, other studies demonstrated that decellularized skeletal 
muscle scaffolds implanted in vivo are able to restore not only muscle 
mass, but also muscle innervation and functional recovery [42-44]. 
In particular, improved maturation of neuromuscular junctions was 
observed in exercised mice subject to tibialis anterior volumetric 
muscle loss damage [43]; in a diaphragmatic hernia mouse model, 
decellularized scaffold was able to guide nerve attraction and re-growth 
and to direct development of new neuromuscular junctions [44]. 
Moreover, an interesting work investigated the possibility to recreate ad 
hoc decellularized scaffold for oriented tissue regeneration [45]. 

In recent years, remarkable progresses have been reached in the use 
of biomaterials for promoting neuronal regeneration. Regardless that 
further studies are required to understand the role of tissue-specific 
decellularized matrices in neuronal regeneration, decellularized 
scaffolds still represent promising biomaterials for the development of 
alternative regenerative strategies [46]. It was recently shown that the 
combination of removable polymeric microfibers and decellularized 
matrix allowed the generation of decellularized ECM scaffolds with 
aligned microchannels able to guide proliferation and differentiation 
of nervous cells in vitro, and to sustain tissue repair in vivo [45]. The 
technical integration of synthetic biomaterials and decellularized 
scaffolds, as whole tissues, as well as injectable gel [47,48] or bio-ink 
suitable for bioprinting [49,50], represents a powerful instrument 
to finely manipulate three-dimensional scaffolds and therefore to 
instruct cell behaviour and improve the overall outcome of tissue 
regeneration.
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