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Introduction
Ultrasound imaging has been widely used in routine diagnostics 

because of its low cost, nonionizing radiation, and real-time capability 
[1,2]. A transducer transmits ultrasound waves into a tissue, which 
interact with the tissue, and the transducer receives the echoes 
returned. Constructed from the amplitude of ultrasound echo signals, 
ultrasound B-mode images suffer from the drawbacks as being 
qualitative and operator-dependent [1]. To complement B-mode 
imaging, quantitative ultrasound (QUS) explores frequency, phase, or 
statistical information of backscattered ultrasound signals for tissue 
characterization [3–10]. In the context of QUS, parameters including 
backscatter coefficient, acoustic attenuation, speed of sound, envelope 
statistics, scatterer properties, and tissue elasticity can be quantified for 
tissue characterization [4,11,12].

When a tissue is modeled as a collection of scattering particles (i.e., 
scatterers), the interaction of incident ultrasound waves with tissue 
scatterers can be reflected in the unprocessed radiofrequency (RF) echo 
signals. Envelope statistics are directly related to tissue microstructures 
and are able to characterize structural alterations in tissues that are not 
apparent on ultrasound B-mode images [4–10]. Thus, they are useful 
for quantitative description of pathological state of tissues. Envelope 
detection of ultrasound RF data is essential for envelope statistics 
analysis [4–10]. In order to ensure real-time backscattered envelope 
analysis, the time efficiency of the envelope detection algorithm is 
demanded. 

OpenCV is an open-source computer vision library written with 
C/C++ (http://opencv.org/) and has been widely used for image 
processing and computer vision applications [13–16]. Specifically, 
OpenCV has provided a graphics processing unit (GPU) framework 

for real-time data processing [16]. Considering the open-source nature 
and GPU framework of OpenCV, we proposed using OpenCV GPU 
to detect ultrasound backscattered envelope in this work. Envelope 
detection experiments were conducted on 21 frames of ultrasound RF 
data. Experimental results demonstrated that real-time RF envelope 
detection could be realized with the OpenCV GPU framework.

Materials and methods
Data acquisition

This study was approved by the Institutional Review Board 
of National Taiwan University Hospital and the patients signed 
informed consent forms. Breast ultrasound images were collected 
with a commercial portable ultrasound scanner (Model 3000, Terason, 
Burlington, MA, USA), with the raw RF data digitized at a sampling 
rate of 30 MHz. The transducer comprised a wideband linear array 
(Model 10L5, Terason) with a center frequency of 7.5 MHz. Twenty-
one volunteer female patients with breast tumors were recruited. 
A sonographer performed the ultrasound scanning. Each image 
acquisition protocol involved a total of 256 beamformed scan lines 
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(1552 sample points per scan line) of the backscattered echoes. The 
interval between each scan line was 0.15 mm.

Envelope detection

The instantaneous amplitude (A-line) of the ultrasound RF signal 
is obtained by envelope detection:

ˆ( ) ( ) ( )e t r t jr t= + 				                    (1)

where e(t) denotes the A-line, r(t) is the ultrasound RF signal, ˆ( )r t  
denotes the Hilbert transform of r(t), and j is the imaginary unit. The 
expression ˆ( ) ( )r t jr t+  is referred to as the analytic signal or complex 
RF echo. In previous studies, Hilbert transform has been frequently 
used for envelope detection of ultrasound RF signals [6–10]. Based 
on the property of Hilbert transform [17,18], the analytic signal 

ˆ( ) ( )r t jr t+  has no spectrum components at negative frequencies 
and its spectrum components at positive frequencies are doubled [19]. 
This property will be considered in the algorithm implementation of 
envelope detection based on Hilbert transform. Figure 1 shows the flow 
chart of the envelope detection algorithm.

Algorithm implementation

Suppose that a frame of ultrasound RF data, r(t), comprises M 
scan lines, and each scan line contains N sample points. For the ith scan 
line of r(t), 1 i M≤ ≤ , the Hilbert transform is computed. Then, the 
envelope of the RF data is computed using Equation (1).

The Hilbert transform of the ith scan line, s, is calculated using 
the discrete Fourier transform (DFT) [20] and involves a five-step 
algorithm:

(i)	 Define a complex vector c, whose real part is s and imaginary part 
is zero vector. 

(ii)	 Conduct N-point forward DFT [20] to c, and a complex vector d 
is obtained.

(iii)	For the kth sample point, 1 k N≤ ≤ , if [ ]1,  / 2k N∈ , let both 
the real part and imaginary part of [ ]d k  be multiplied by 2; if 

[ ]( / 2)+1,  k N N∈ , let both the real part and imaginary part of 
[ ]d k  be zero.

(iv)	 Conduct N-point inverse DFT [20] to d, and a complex vector v is 
obtained.

(v)	 The Hilbert transform of the ith scan line s is computed as the 
imaginary part of v divided by N.

In this study, the Hilbert transform based envelope detection 
algorithm was implemented using the C++ language with OpenCV 
2.4.9 and Microsoft(R) Visual C++ 2010. Both OpenCV CPU and 
OpenCV GPU frameworks based envelope detection was performed, 
and C++ codes for the algorithm implementation were provided in 
Tables 1,2 and 3, where “rf” denoted the ultrasound RF data matrix, 
and “envelope” was the envelope matrix of “rf”. Envelope detection 
with OpenCV CPU was based on the OpenCV matrix data structure, 
cv::Mat. Forward DFT and inverse DFT on the basis of the OpenCV 
CPU framework were computed using the OpenCV DFT function, 
cv::dft(). Envelope detection with OpenCV GPU was based on the 
OpenCV GPU matrix data structure, cv::gpu::GpuMat. Forward DFT 
and inverse DFT on the basis of the OpenCV GPU framework were 
conducted using the OpenCV GPU based DFT function, cv::gpu::dft(). 
The communication between CPU and GPU was performed using 
GpuMat::upload() and GpuMat::download() functions.

Results
Envelope detection experiments were conducted on 21 frames 

of ultrasound RF data using a computer with dual 2.60-GHz Intel(R) 
Xeon(R) E5-2670 CPU, 64-GB RAM, and 2-GB NVIDIA(R) QuadroTM 
4000 GPU. The number of scan lines and sample points are listed in 
Table 1. Experimental results showed that visually, the OpenCV GPU 
framework produced the same B-mode image as OpenCV CPU (Figure 
2). For RF data of 256 scan lines × 1552 sample points (n = 21), OpenCV 
CPU and OpenCV GPU had a running time of 106.00 ± 0.84 ms and 
18.43 ± 0.68 ms, respectively (Table 4). The results demonstrated that 
the significantly improved computational efficiency of the OpenCV 
GPU method over the OpenCV CPU method.

cv::Mat rfComplex(rf.rows, rf.cols, CV_32FC2);
 std::vector<cv::Mat> combiner;
 combiner.push_back(rf);
 combiner.push_back(cv::Mat::zeros(rf.size(), V_32FC1));
 cv::merge(combiner, rfComplex);
 std::vector<cv::Mat> splitter;
 splitter.push_back(cv::Mat(rfComplex.rows, rfComplex.cols,
 CV_32FC1));
 splitter.push_back(cv::Mat(rfComplex.rows, rfComplex.cols,
 CV_32FC1));
 cv::Mat rfSpectrum = cv::Mat(rfComplex.rows, 
 rfComplex.cols, CV_32FC2);
 // forward DFT
 cv::dft(rfComplex, rfSpectrum, DFT_ROWS);
 cv::multiply(rfSpectrum, factor, rfSpectrum, 1.0, CV_32FC2);
 // inverse DFT
 cv::dft(rfSpectrum, rfComplex, DFT_ROWS | 
 DFT_INVERSE);
 cv::split(rfComplex, splitter);
 // get imaginary part 
 imag = splitter[1];
 cv::multiply(imag, cv::Scalar(1.0/rf.cols), imag, 1.0, 
 CV_32FC1);
 cv::magnitude(rf, imag, envelope);

Table 1. C++ code for envelope detection using the OpenCV CPU framework.

cv::gpu::Stream stream; 
 cv::gpu::GpuMat rfGPU = cv::gpu::GpuMat(rf.rows, rf.cols, CV_32FC1);
 rfGPU.upload(rf);
 cv::gpu::GpuMat rfComplexGPU = cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, 
CV_32FC2);
 std::vector<cv::gpu::GpuMat> combiner;
 combiner.push_back(rfGPU);
 combiner.push_back( cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, CV_32FC1, 
cv::Scalar(0)) );
 cv::gpu::merge(combiner, rfComplexGPU, stream);
 cv::gpu::GpuMat factorGPU = cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, CV_32FC2);
 factorGPU.upload(factor);
 cv::gpu::GpuMat rfSpectrumGPU = cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, 
CV_32FC2);
 std::vector<cv::gpu::GpuMat> splitter;
 splitter.push_back(cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, CV_32FC1));
 splitter.push_back(cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, CV_32FC1));
 // forward DFT
 cv::gpu::dft(rfComplexGPU, rfSpectrumGPU, rfComplexGPU.size(), DFT_ROWS, 
stream);
 cv::gpu::multiply(rfSpectrumGPU, factorGPU, rfSpectrumGPU, 1.0, CV_32FC2, 
stream);
 // inverse DFT
 cv::gpu::dft(rfSpectrumGPU, rfComplexGPU, rfComplexGPU.size(), 
DFT_ROWS | DFT_INVERSE, stream);
 cv::gpu::split(rfComplexGPU, splitter, stream);
 // get imaginary part 
 cv::gpu::GpuMat imagGPU = splitter[1];
 cv::gpu::multiply(imagGPU, cv::Scalar(1.0/rfGPU.cols), imagGPU, 1.0, CV_32FC1, 
stream);
 cv::gpu::GpuMat magGPU = cv::gpu::GpuMat(rfGPU.rows, rfGPU.cols, CV_32FC1);
 cv::gpu::magnitude(rfGPU, imagGPU, magGPU, stream);
 magGPU.download(envelope);
 stream.waitForCompletion();

Table 2. C++ code for envelope detection using the OpenCV GPU framework.
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Table 3. C++ code for preprocessing.

rf.convertTo(rf, CV_32FC1);
 cv::Mat imag(rf.rows, rf.cols, CV_32FC1); // imaginary part
 cv::Mat factor = cv::Mat::ones( rf.rows, rf.cols, CV_32FC2 );
 for (int i=0; i<rf.rows; ++i)
 {
 for (int j=1; j<rf.cols/2; ++j)
 {
 factor.at<cv::Vec2f>(i, j)[0] = 2;
 factor.at<cv::Vec2f>(i, j)[1] = 2;
 factor.at<cv::Vec2f>(i, rf.cols-j)[0] = 0;
 factor.at<cv::Vec2f>(i, rf.cols-j)[1] = 0;
 }
 }
 cv::Mat envelope(rf.rows, rf.cols, CV_32FC1);

No. Running time for OpenCV 
CPU (ms)

Running time for OpenCV 
GPU (ms)

1 107 18
2 106 19
3 105 19
4 106 19
5 105 19
6 107 19
7 106 19
8 105 18
9 106 18
10 105 19
11 106 19
12 107 19
13 107 19
14 107 18
15 107 19
16 107 18
17 105 17
18 106 18
19 106 18
20 105 17
21 105 18

Average 106.00 ± 0.84 18.43 ± 0.68

Table 4. Running time for envelope detection of radiofrequency data (256 scan lines × 1552 
sample points) using OpenCV CPU and OpenCV GPU frameworks (n = 21).

Input: Ultrasound radiofrequency 
signal (M scan lines * N data points)

For each scan line s, conduct envelope 
detection using Hilbert transform

Output: Ultrasound envelope signal 
(M scan lines * N data points)

Scan line s (N-point vector)

Define a complex vector c, whose real part is 
s and imaginary part is zero vector

Conduct N-point forward DFT to c, to obtain 
a complex vector d 

For the kth sample point, 1<=k<=N, (1) if 
1<=k<=N/2, let both the real part and 

imaginary part of d[k] be multiplied by 2; (2) 
if N/2+1<=k<=N, let both the real part and 

imaginary part of d[k] be zero

Conduct N-point inverse DFT to d, to obtain 
a complex vector v

The Hilbert transform of scan line s is 
computed as the imaginary part of v 

divided by N
 

Figure 1. Flow chart of the ultrasound radiofrequency signal envelope detection algorithm.

Figure 2. Visual comparison of breast ultrasound B-mode images computed from 
backscattered envelope detected using OpenCV CPU (left) and OpenCV GPU (right) 
frameworks

Discussion and conclusions
Envelope detection of ultrasound backscattered signals is an 

essential step in many ultrasonic applications, such as envelope statistics 
based tissue characterization [4–10]. Real-time envelope detection is 
desired for fast analysis of ultrasound RF signals. However, envelope 
detection on CPU can be a time-consuming process. To accelerate the 
computation, parallel GPUs, especially the GPGPU for general purpose 
computing on GPU, have been used in many fields including machine 
learning and medical image processing [21,22]. 

The CUDA (Compute Unified Device Architecture) and OpenCL 
platforms are the two most widely adopted programming models for 
GPU computing. OpenCV is an open-source computer vision library 
with a GPU framework. The OpenCV GPU framework is implemented 
based on the CUDA platform and is easy and flexible to use. OpenCV 
has been used in various ultrasound applications including breast 
ultrasound image segmentation [14] and quasi-real-time ultrasound 
backscattered statistical parameter imaging (i.e., ultrasound Nakagami 
imaging) [15]. However, in our previous work, the envelope detection 
of RF signals was realized on CPU [15], limiting the frame rate of 
ultrasound Nakagami imaging (1–3 frames per second). In applications 
such as real-time ultrasonic characterization of cardiac tissues, the 
computation speed is highly demanded. 

To date, quantitative ultrasound research using OpenCV GPU has 
not been conducted. To our knowledge, this work is the first to use 
OpenCV GPU framework for backscattered envelope detection. In 
this work, we proposed using OpenCV GPU framework for envelope 
detection of ultrasound RF signals. Experimental results demonstrated 
that the OpenCV GPU framework is capable for real-time envelope 
detection. The proposed OpenCV GPU based envelope detection 
method may be used in various ultrasound tissue characterization 
applications demanding fast computation of the envelope of 
backscattered RF signals.
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