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Abstract
Atherosclerosis is a cardiovascular disease marked by chronic inflammation. The disease is intimately related to the accumulation of fatty acids in the tunica intima of 
medium and large caliber arteries. The development of the disease respond to alteration of the vascular and immune system homeostasis. The inflammatory process is 
aggravated by the action of immune cells. The diagnosis of the disease is invasive in most cases. Thus, new diagnostic and therapeutic techniques are required and could 
increase the quality of life of atherosclerotic patients. The eNOS gene has been indicated as an efficient biomarker of cardiovascular diseases, including atherosclerosis, 
stroke and myocardium infarction. The eNOS gene and the protein it encodes control the production of nitric oxide. This compound takes part in a large variety of 
biological functions and its action is crucial for the protection of arteries against damage. Here, an in-silico approach was used to design two small active peptides as 
a way to stabilize eNOS and guarantee its normal level of function regarding the production of nitric oxide. We hypothesize that the use of designed peptide would 
lead to an efficient therapy and with less or none side effect to atherosclerotic patients, as a substitution of statins therapy, such as atorvastatin. For future perspective, 
an assay of the modulating peptides is being designed to be tested in vitro and in vivo in order to be possibly used as a new therapeutic agent.
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Introduction
Atherosclerosis is a common worldwide disease marked by a 

chronic inflammatory process due to the accumulation of fatty acids in 
the tunica intima. The disease leads to the formation of an atheromatous 
plaque through the accumulation and deposition of platelet factors, fatty 
acids, immune system and smooth muscle cells. The direct consequence 
of such factor is the narrowing of the arterial lumen. Eventually, the 
atheromatous plaque undergoes fibrosis and calcification, which over 
time might lead to severe symptoms and even death [1]. 

The onset of the atherosclerosis depends on alteration of the 
vascular and immune system homeostasis [2]. Cells from the immune 
system affect the pathogenesis of the disease aggravating inflammatory 
processes within the endothelium [3]. Atherosclerosis is a silent disease 
and takes a long period to manifest due to genetic, physiological and 
environmental factors [4]. In addition, cardiovascular diseases, such as 
atherosclerosis, are the leading cause of death worldwide [5]. Several 
risk factors are related the development and manifestation of such 
diseases.

Diagnosis of atherosclerosis is usually invasive. The necessity 
of finding new and efficient methods of identifying individuals 
predisposed to develop atherosclerosis is real [1]. Bioinformatic 
assays have been trying to accomplish that task along with more 
efficient and less invasive ways to treat cardiovascular diseases [6]. The 
incredibly complex genetic trait presented by atherosclerosis makes the 
development of such methods difficult and time-consuming [2]. 

One of the most important genes investigated as a biomarker of 
cardiovascular diseases is eNOS (endothelial nitric oxide synthase). The 
eNOS coding gene is located on chromosome 7 and is responsible for 
the production of nitric oxide. This compound has lipophilic properties 
and participates in many intracellular homeostatic processes [7-9]. 
Nitric oxide also controls the vascular tone [10], cell proliferation 

[11], adhesion of immune system cells to arteries wall undergoing 
inflammation processes [12] and platelet aggregation [13]. Mutation 
within the eNOS gene coding sequence and within the amino acid 
sequence of the eNOS protein may affect endothelial function [14]. The 
unavailability of nitric oxide in proper levels increase the production 
and release of reactive oxygen species (ROS) that cause endothelial 
injury and is related to several cardiovascular diseases,  such as 
atherosclerosis [15], coronary artery disease [16], diabetes [17] and 
infarction [18].

Statin drugs are widely used in order to prevent cardiovascular 
diseases in patients at high risk of developing such diseases [19]. 
Atorvastatin is a common type o statin used to treat patients with high 
levels of lipids. The most common side effects are nausea, diarrhea, 
heart burn, joint and muscle pains, rhabdomyolysis, liver and kidney 
problems and diabetes [20]. Similar to general statins, atorvastatin 
inhibits HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme 
A reductase) that takes part in cholesterol production.

Here, we used an in-silico approach to predict modulator peptides 
of the eNOS protein in order to enhance nitric oxide production. 
Similar effect is achieved by atorvastatin therapy in patients suffering 
from atherosclerosis. We hypothesize that the use of designed peptide 
would lead to an efficient therapy and with less or none side effect 
to atherosclerotic patients. For future perspective, an assay of the 
modulating peptides is being designed to be tested in vitro and in vivo 
in order to be possibly used as a new therapeutic agent.
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that regulate stabilization of the protein-peptide complex. Electrostatic 
forces have been shown to stabilize protein and protein complexes 
conformation [38,39] and might affect diseases onset and progression 
[40]. In addition, interactions mostly based on hydrophobicity and Van 
der Waals are related to stabilization of protein and ligands in a way that 
they could enhance response to statins and improve prognosis of the 
cardiovascular diseases [41].

Usually, hot spots occurs in clusters and the design of modulating 
peptides is performed around these regions in order to allow interaction 
between protein-drug in a more stable way [42]. The hot spots, in the 
present work, were found to form clusters, as it usually is, and contribute 
to the stability of the interaction between eNOS and peptide (Tables 1).

The residue R70 and R474 were predicted as a hot spot (Table 1). 
Arginine (R) is an amphipathic residue and is frequently present on 
the surface of proteins, allowing its interaction with other organic 
molecules. This fact makes this amino acid play important roles as 
hot spots in several proteins related to diseases [43]. The R residues 
are involved in polar bonding between proteins and target molecules, 
such as drugs and peptides. In addition, this amino acid is often 
interacting with residues of several other proteins through electrostatic 
forces [44], working as an electrostatic adhesive force when organic 
molecules interact with each other [45]. In our assay, the R hot spot 
residues establish polar interactions with residues in the vicinity within 
the same polypeptide chain and with amino acids from the designed 
peptide (peptide 185) (Figure 2A). Therefore, R70 as a hot spot residue 
is essential for the stability of eNOS, establishing contacts with peptide 
185 through bonds in the range of 4 Å (Figure 2B).

The residues Q (glutamine) 476 (Figure 3), D (aspartate) 478 
and W (tryptophan) 480 also help to stabilize the conformation of 
eNOS interaction with peptides. Figure 3A shows the disposition of 
the peptide near this cluster of residues. Histidine residues also form 
this cluster of hot spots (data not shown) and significantly reduce the 
free-energy of interaction, playing an important role on the biological 
function that proteins are involved in [46,47]. Histidine residues exert 
a variety of roles in molecular interactions performed by protein in 

Materials and Methods
The prediction of the three-dimensional structure of eNOS was 

modeled by the I-TASSER (Iterative Threading Assembly Refinement) 
server [21]. The modeling process was based on homologous templates 
of protein structures resolved previously and deposited in the PDB 
(protein databank). The predicted eNOS structure underwent fold 
recognition via Monte Carlo computational simulations and the 
secondary structure of the protein was determined by PSSpred (Protein 
Secondary Structure Prediction) [22,23]. The best ranked predictions 
was clustered by means of conformation and energy using SPICKER 
[24] in order to determine the nearest native structures and molecular 
dynamics was used as a refinement.

The visualization software PyMol (https://pymol.org) was used in 
order to analyze the eNOS structure, to highlight polymorphic residues 
and finally to design peptides to modulate the eNOS conformation and 
function. Amino acid residues that significantly contribute to the free-
energy of binding and stability of the interaction between protein and 
peptide were predicted by the KFC2 [25] server. The identification of 
such amino acid residues depends on physical and chemical properties 
of the environment around those amino acids. Alanine scanning 
mutagenesis are considered for the prediction of hot spots in the protein 
structure. The hot spot scores depend on conformation (score a) and 
on chemical properties (score b). Clinically important polymorphic 
residues for the eNOS and p53 proteins were identified through the 
dbSNP (database of single nucleotide polymorphism).

Results and Discussion
Both the gene and the protein eNOS control the nitric oxide 

production. The release of nitric oxide affects positively several 
physiological conditions [26], such as vascular tone [27], apoptosis 
[28] and platelet aggregation [29] and diseases, such as several types 
of cancer [30] and vascular diseases [31,32]. Researchers have been 
using in silico approaches in order to contribute to the development 
of novel diagnostic and therapeutic methods [33,34]. The prediction of 
important amino acid residues acting as hot spots within the binding 
pocket of protein interacting with drugs has shed some light on the 
design of modulators peptides of the function and conformation of target 
proteins [34-36]. Polymorphisms in regions of hot spot clusters alter 
the stable conformational of proteins and may raise the predisposition 
to cardiovascular diseases [37]. The present bioinformatics approach 
allowed the design of two modulator peptides (peptide 185 and peptide 
207) that stabilize the eNOS protein and its function in atherosclerosis. 

Figure 1 shows the predicted hot spots on eNOS structure (Table 1) 
regarding the designed peptides. The prediction was based on three types 
of interaction energy (electrostatic, hydrophobic and Van der Waals) 

Hot Spot Residue* Structure Score Chemical Score
R170 0.36 0.04
F105 0.63 0.04
W244 1.38 0.29
W322 1.46 0.25
L326 0.6 0.14
Q476 0.52 0.06
D478 1.37 0.01
W480 1.28 0.29
R474 0.99 0.14

Table 1. Predicted hot spot amino acid residues that contribute to the stabilization of the 
eNOS protein in order to maintain its function and nitric oxide production

*Prediction was performed via KFC2 [25].

Figure 1. The eNOS protein and the predicted hot spots according to the binding of 
modulating peptides The prediction of hot spot residues (yellos) on the eNOS structure 
(purple) was based upon interaction with modulating peptides designed to stabilize the 
conformation of the protein according to its ability to regulate production and release of 
nitric oxide. The same effect is achieved by the use of statins such as atorvastatin
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general due to their biochemical properties. Histidine are able to 
modulate the electrostatic coefficient of positively or negatively charged 
amino acids. This ability is crucial for the stability of proteins [48] 
and for designing therapeutic peptides [49]. In addition, leucine and 
tryptophan residues (defined as hot spots in the binding of eNOS and 
small molecules or drugs such as statins) contribute to the stability of 
protein conformation and binding energy through polar interaction 
and this property has also been demonstrated to occur for histidine 
residues [48,49].

R474 and Q476 residues contribute to the free-energy of 
stabilization of eNOS and binding to the peptide 183 mainly through 
electrostatic-favored bonds. Hot spot residues that perform those types 
of interactions play important roles on the intermolecular association 
and aggregation of a protein and a binding molecule via polar bonds [50] 
in a range of approximately 3 Å. In addition, the amino acid aspartate 
participates in interactions among several types of organic molecules, 
such as peptides, proteins and RNAs [51]. Tryptophan, another hot 
spot identified in the present approach (Table 1), has been pointed 
as a common component of protein-ligand interfaces, anchoring the 
structure of the binding organic molecules [52] and stabilizing binding 
sites of proteins [53]. 

A tryptophan residue classified as a hot spot residues by our 
analysis contribute to the free energy of eNOS binding to a second 
designed peptide (peptide 207) through hydrophobic interactions. 
Hydrophobic residues, such as tryptophan, and their bonding to 
neighboring residues help to maintain eNOS folding, mainly because of 
their hydrophobic properties and tendency to be placed within cavities 
of the protein structure, away from the solvent [54]. Figure 4A shows 
the disposition of peptide 207 and its placement in a protein cleft and 
Figure 4B shows how the hot spot D478 and W480 residues interact 
with neighboring residues of peptide 207. Tryptophan and establishes 
several polar interaction with peptide 207 in the range of 3 Å.

Moreover, hydrophobic amino acid residues influence refolding 
and stability of secondary beta‐sheets [55-58]. Here, W322 is in a 
beta‐sheet chain and we hypothesize that it significantly contributes to 
the stabilization of the conformation of eNOS, mimicking the effects 
of statins, used as treatment of atherosclerosis.  Single nucleotide 
polymorphisms that substitute this amino acid residue shows clinical 
relevance as it increase susceptibility to cardiovascular disease reducing 
the level of nitric oxide available for the intracellular and vascular 
homeostasis.

To our knowledge, no study aimed at the design of small molecules 
for the substitution of well-established atherosclerosis statin therapy, 
although several studies have tried to design modulator peptides of the 
eNOS protein [60-65].

Conclusion remark
Cardiovascular diseases are a leading cause of death globally. 

Eating and drinking habits, genetic and environmental factors are 
closely related to the susceptibility to infarction, atherosclerosis and 
hypertension. Bioinformatic approaches has invested in the modeling 
of protein structures, networks of interaction and design of small active 
molecules in order to improve diagnostic and therapy techniques. Here, 
an in-silico approach was used to design two small active peptides as 
a way to stabilize eNOS and guarantee its normal level of function 
regarding the production of nitric oxide. We hypothesize that the use 
of designed peptide would lead to an efficient therapy and with less or 

Figure 2. Interaction between R70 and F105 of eNOS and peptide 185
(A) The image shows the surface of eNOS in purple and the hot spot predicted residues  
by KFC2 [25] in yellow. Peptide 185 is represented in blue. This small molecule helps to 
stabilize eNOS conformation and maintain its activity. (B) The cartoon representation of 
eNOS showing the structures of R70 and F105 and their interaction with peptide 185. The 
distance of the bonds established by R70 and F105 in in the range of 4 and 3 Å, respectively

Figure 3. Interaction between R474 and Q476 of eNOS and peptide 185
(A) The image shows another view of the surface of eNOS in purple and the hot spot 
predicted residues in yellow. Peptide 185 is represented in blue. (B) The cartoon 
representation of eNOS showing the structures of R474 and Q476 when they are interacting 
directly with peptide 185. The distance of the bonds established by R474 and Q476 is in 
the range of 3 Å
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none side effect to atherosclerotic patients, as a substitution of statins 
therapy, such as atorvastatin. For future perspective, an assay of the 
modulating peptides is being designed to be tested in vitro and in vivo 
in order to be possibly used as a new therapeutic agent.
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